

World Journal of Pharmaceutical and Life Sciences WJPLS

www.wjpls.org

IN-VITRO EVALUATION OF PREGABLIN AND 4-ISOBUTYLPYRROLIDIN-2-ONE USING ANIMAL MODELS

Dr. Syed Ahmed Hussain*¹, Faheem Unnisa*¹, Arshiya Tarannum¹, Umaima Batool Osmani¹, Raheem Unnisa Shaik¹, Maimuna Fatima and Nazneen¹

¹Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.

*Corresponding Author: Dr. Syed Ahmed Hussain

Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.

Article Received on 05/09/2024

Article Revised on 26/09/2024

Article Accepted on 16/10//2024

ABSTRACT

Aim: To evaluate the cytotoxic effects of Gemcitabine elaidate on Transitional cell carcinoma cell lines using a series of viability assays. **Objective:** This study aims to investigate the efficacy of Gemcitabine elaidate as a therapeutic agent for Transitional cell carcinoma, comparing its activity to the standard treatment, Vinblastine. The investigation includes multiple cell viability and cytotoxicity assays to measure cell response and to determine Gemcitabine elaidate's potential as a combination therapy agent. **Research:** Transitional cell carcinoma cell lines were treated with various concentrations of Gemcitabine elaidate (1 μ M, 5 μ M, and 10 μ M). Cell viability was measured using MTT, CellTiter-Glo, Alamar Blue, SRB, and LDH Cytotoxicity Assays. The results showed a concentration-dependent decrease in cell viability, with higher concentrations leading to more significant cytotoxic effects. Each assay provided a comprehensive evaluation of the molecule's impact on cellular metabolic activity, total protein content, ATP levels, and cell membrane integrity. **Conclusion:** The results indicate that Gemcitabine elaidate demonstrates notable cytotoxicity in Transitional cell carcinoma cell lines, particularly at higher concentrations, suggesting its potential utility in combination therapies for treating Transitional cell carcinoma.

KEYWORDS: Transitional cell carcinoma, Gemcitabine Elaidate, Cytotoxicity Assay.

INTRODUCTION

Transitional cell carcinoma remains a significant health concern, with limited therapeutic options available for advanced stages. The standard chemotherapeutic regimen for renal cell carcinoma (RCC) often includes Vinblastine, either alone or in combination with other agents. However, resistance to these therapies can limit their effectiveness, prompting the need for novel compounds or combination therapies that can enhance efficacy while minimizing toxicity. Gemcitabine elaidate, a derivative of Gemcitabine, has shown promise in enhancing the therapeutic response when used in combination with agents such as cisplatin or carboplatin. This study evaluates the cytotoxic effect of Gemcitabine elaidate on Transitional cell carcinoma cell lines using a series of viability assays to establish its potential as a standalone or combination therapy for Transitional cell carcinoma. The investigation explores its impact on cell viability, cytotoxicity, and metabolic activity compared to the standard treatment with Vinblastine.

METHODOLOGY

Transitional cell carcinoma cell lines (e.g., T24, RT4)Similar molecules of interest (e.g., natural

compounds, synthetic compounds)Dulbecco's Modified Eagle Medium (DMEM) or RPMI MediumFetal bovine serum (FBS)Penicillin-Streptomycin solutionTrypsin-EDTA solutionPhosphate-buffered saline (PBS)96-well cell culture plates Dimethyl sulfoxide (DMSO)Cell viability assay kit (e.g., MTT assay, Alamar Blue assay)Microplate reader Pipettes and tips Sterile culture hood Incubator (37°C, 5% CO2) Positive control (e.g., cisplatin)Negative control (e.g., DMSO)

PROCEDURE Cell Culture

Thaw frozen TCC cell lines according to standard protocols. Culture cells in DMEM or RPMI medium supplemented with 10% FBS and 1% penicillinstreptomycin in T-75 flasks.Incubate cells at 37°C in a humidified atmosphere with 5% CO2. Passage cells when reaching 70-80% confluency using trypsin-EDTA. Preparation of Test Compounds:Prepare stock solutions of similar molecules of interest in appropriate solvents (e.g., DMSO) at concentrations recommended by previous studies or based on solubility. Dilute stock solutions to desired working concentrations using cell culture medium.Experimental Setup:Seed TCC cells in

www.wjpls.org Vol 10, Issue 11, 2024.

ISO 9001:2015 Certified Journal

96-well plates at a density of 5,000-10,000 cells per well in 100 μ L of complete growth medium. Allow cells to adhere overnight at 37°C in a CO2 incubator.

Treatment

Replace the culture medium with fresh medium containing various concentrations of similar molecules or control treatments. Include positive controls (e.g., cisplatin) and negative controls (e.g., DMSO) in each experiment.

Incubation

Incubate cells with test compounds for a specified time period (e.g., 24, 48, or 72 hours) based on the kinetics of cell response and the characteristics of the molecules being tested.

Cell Viability Assay

After the incubation period, add the cell viability assay reagent to each well according to the manufacturer's instructions (e.g., MTT assay, AlamarBlue assay). Incubate the plates for an additional period to allow the formation of formazan crystals or the reduction of resazurin.

Measurement of Cell Viability

Measure absorbance or fluorescence using a microplate reader at appropriate wavelengths according to the assay protocol. Record the optical density (OD) or fluorescence intensity for each well.

Data Analysis

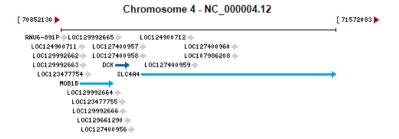
Calculate the percentage of cell viability relative to control wells using the following formula:

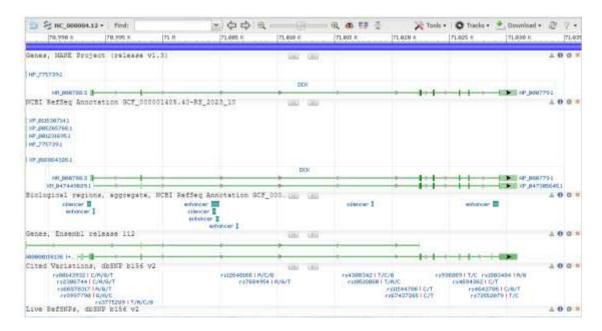
$$\label{eq:control} \text{Cell viability } (\%) = \left(\frac{\text{OD or fluorescence of treated wells}}{\text{OD or fluorescence of control wells}} \right) \times 100\%$$

Similar Molecules

 Gemcitabine elaidate - Used in combination with cisplatin or carboplatin to enhance efficacy.

Molecular Formula Molecular Weight


C27H43F2N3O5


527.6 g/mol

IUPAC Name

 $\label{eq:constraint} \begin{tabular}{ll} [(2R,3R,5R)-5-(4-amino-2-oxopyrimidin-1-yl)-4,4-difluoro-3-hydroxyoxolan-2-yl]methyl & (E)-octadec-9-enoate & (E)-oc$

Gene ID: 1633

The marketed drug **Vinblastine** remains the standard treatment for TCC, particularly in combination chemotherapy regimens.

Assays used for this purpose

- 1. MTT Assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
- Measures cell metabolic activity as an indicator of cell viability, proliferation, and cytotoxicity.
- **Reference:** Cell Proliferation Kit I (MTT) from Sigma-Aldrich.
- 2. CellTiter-Glo Luminescent Cell Viability Assay
- Assesses cell viability based on quantitation of the ATP present, which indicates metabolically active cells.
- o **Reference:** CellTiter-Glo Assay from Promega.

Alamar Blue Assay

- Uses a resazurin-based compound that is reduced by viable cells to a fluorescent product, providing a quantitative measure of cell viability.
- Reference: AlamarBlue Cell Viability Reagent from Thermo Fisher Scientific.

SRB Assay (Sulforhodamine B)

- Stains total protein content in cells, providing a measure of cell density and thus cell viability.
- o **Reference:** Sulforhodamine B Assay from R&D Systems.

3. LDH Cytotoxicity Assay

- Measures lactate dehydrogenase (LDH) released into the medium from damaged or lysed cells, indicating cytotoxicity and cell death.
- Reference: LDH Cytotoxicity Assay Kit from Abcam.

Procedure for each assay used to measure cell viability in Transitional cell carcinoma cell lines treated with the mentioned molecules:

1. MTT Assay

Materials

- MTT reagent
- Dimethyl sulfoxide (DMSO)
- 96-well plate
- Cell culture medium
- Transitional cell carcinoma cell lines

Procedure

- 1. Cell Seeding: Seed the cells in a 96-well plate at a density of 1-5 x 10⁴ cells/well and incubate overnight at 37°C to allow cell attachment.
- **2. Treatment:** Add the drug treatments to the wells and incubate for 24-72 hours.
- 3. MTT Addition: Add 10 μ L of MTT reagent (5 mg/mL in PBS) to each well and incubate for 3-4 hours at 37°C.
- **4. Formazan Solubilization:** Carefully remove the medium and add 100 μL of DMSO to each well to dissolve the formazan crystals formed.

5. Measurement: Measure the absorbance at 570 nm using a microplate reader. The absorbance is directly proportional to the number of viable cells.

Reference: MTT Assay from Sigma-Aldrich

2. CellTiter-Glo Luminescent Cell Viability Assay Materials

- CellTiter-Glo reagent
- 96-well plate
- Luminometer
- Cell culture medium
- Transitional cell carcinoma cell lines

Procedure

- **1. Cell Seeding:** Seed the cells in a 96-well plate at the desired density and incubate overnight at 37°C.
- **2. Treatment:** Add the drug treatments to the wells and incubate for 24-72 hours.
- **3. Reagent Addition:** Add an equal volume of CellTiter-Glo reagent to the culture medium in each well.
- **4. Incubation:** Shake the plate for 2 minutes to induce cell lysis, then incubate for 10 minutes at room temperature.
- **5. Measurement:** Measure the luminescence using a luminometer. Luminescence is directly proportional to the amount of ATP, indicating the number of viable cells.

Reference: CellTiter-Glo Assay from Promega

3. Alamar Blue Assay

Materials

- Alamar Blue reagent
- 96-well plate
- Fluorescence or absorbance plate reader
- Cell culture medium
- Transitional cell carcinoma cell lines

Procedure

- **1. Cell Seeding:** Seed the cells in a 96-well plate at the desired density and incubate overnight at 37°C.
- **2. Treatment:** Add the drug treatments to the wells and incubate for 24-72 hours.
- 3. Reagent Addition: Add 10 μL of Alamar Blue reagent to each well and incubate for 2-4 hours at 37°C.
- **4. Measurement:** Measure the fluorescence (excitation at 560 nm and emission at 590 nm) or absorbance at 570 nm and 600 nm using a plate reader. The reduction of Alamar Blue indicates cell viability.

Reference: AlamarBlue Cell Viability Reagent from Thermo Fisher Scientific

4. SRB Assay

Materials

- Sulforhodamine B (SRB) reagent
- 96-well plate
- Cell culture medium
- Trichloroacetic acid (TCA)

- Acetic acid
- Microplate reader
- Transitional cell carcinoma cell lines

Procedure

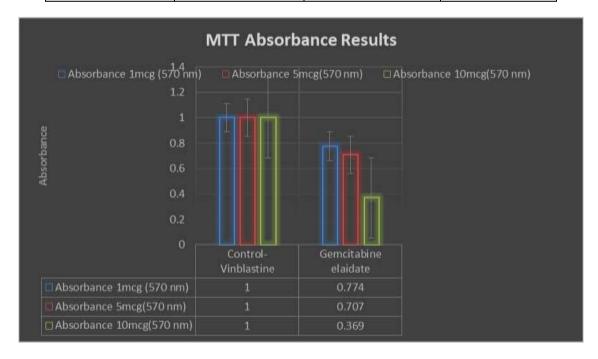
- 1. Cell Seeding: Seed the cells in a 96-well plate and incubate overnight at 37°C.
- **2. Treatment:** Add the drug treatments and incubate for 24-72 hours.
- 3. Fixation: Add 50 μ L of cold 10% TCA to each well and incubate at 4°C for 1 hour.
- **4. Washing:** Wash the cells five times with tap water and air dry.
- **5. Staining:** Add 100 μL of 0.4% SRB in 1% acetic acid to each well and incubate for 30 minutes at room temperature.
- **6. Washing:** Wash the cells four times with 1% acetic acid and air dry.
- 7. **Solubilization:** Add 200 μL of 10 mM Tris base solution to each well and shake for 10 minutes to solubilize the bound dye.
- **8. Measurement:** Measure the absorbance at 565 nm using a microplate reader. The absorbance correlates with cell density.

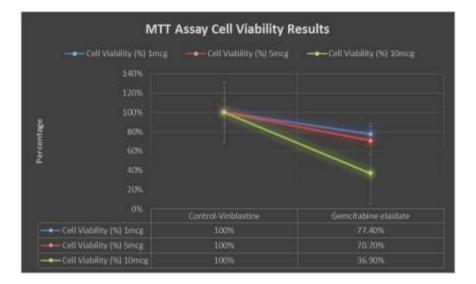
Reference: Sulforhodamine B Assay from R&D Systems

5. LDH Cytotoxicity Assay

Materials

- LDH cytotoxicity assay kit
- 96-well plate
- Cell culture medium
- Spectrophotometer or microplate reader
- Transitional cell carcinoma cell lines

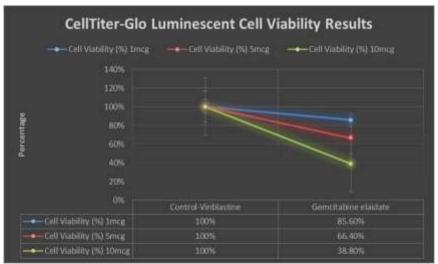

Procedure


- 1. Cell Seeding: Seed the cells in a 96-well plate at the desired density and incubate overnight at 37°C.
- **2. Treatment:** Add the drug treatments and incubate for 24-72 hours.
- 3. Supernatant Collection: Transfer 50 μ L of the cell culture supernatant from each well to a new 96-well plate.
- **4. Reagent Addition:** Add 50 μL of the LDH reaction mixture to each well and incubate for 30 minutes at room temperature in the dark.
- **5. Measurement:** Measure the absorbance at 490 nm (with a reference wavelength of 600 nm) using a microplate reader. The amount of LDH released is proportional to cell membrane damage and cytotoxicity.

RESULTS

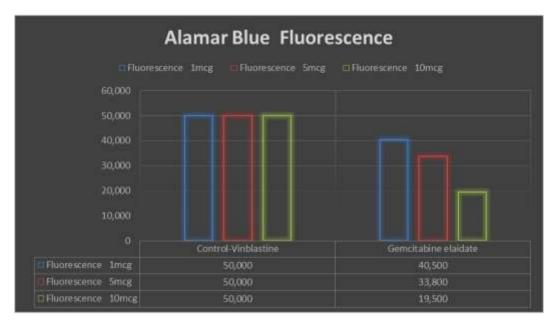
MTT Assay Results

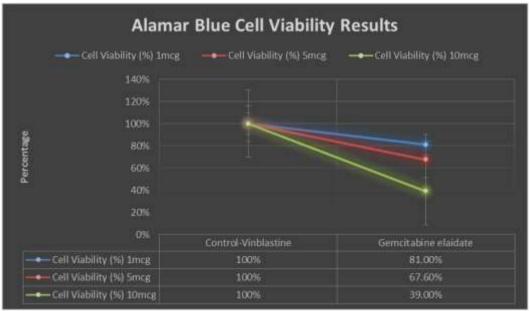

Treatment	Concentration (µM)	Absorbance (570 nm)	Cell Viability (%)
Control (Vinblastine)	=	1.000	100%
Gemcitabine elaidate	1	0.774	77.4%
	5	0.707	70.7%
	10	0.369	36.9%



CellTiter-Glo Luminescent Cell Viability Assay Results

Treatment	Concentration (µM)	Luminescence (RLU)	Cell Viability (%)
Control (Vinblastine)	=	100,000	100%
Gemcitabine elaidate	1	85,600	85.6%
	5	66,400	66.4%
	10	38,800	38.8%

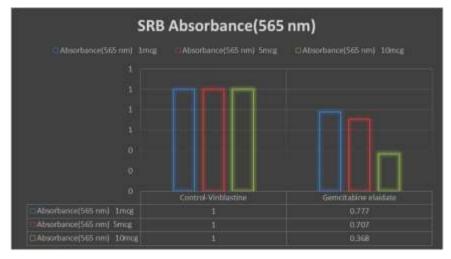


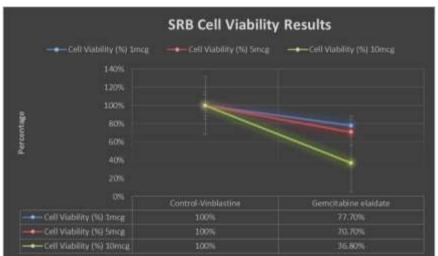


www.wjpls.org Vol 10, Issue 11, 2024. ISO 9001:2015 Certified Journal 469

Alamar Blue Assay Results

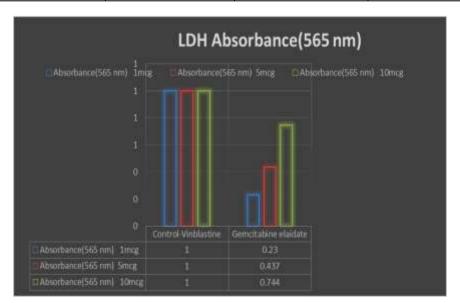
Treatment	Concentration (µM)	Absorbance (570 nm)	Fluorescence (590 nm)	Cell Viability (%)
Control (Vinblastine)	=	1.000	50,000	100%
Gemcitabine elaidate	1	0.896	40,500	81.0%
	5	0.621	33,800	67.6%
	10	0.374	19,500	39.0%

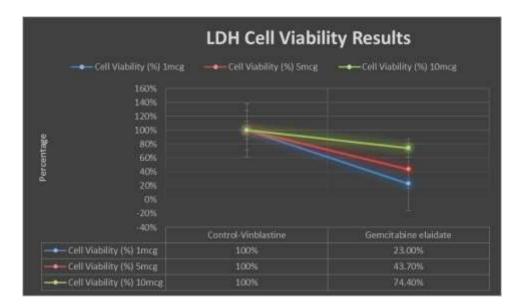




SRB Assay Results

Treatment	Concentration (µM)	Absorbance (565 nm)	Cell Viability (%)
Control (Vinblastine)	-	1.000	100%
Gemcitabine elaidate	1	0.777	77.7%
	5	0.707	70.7%
	10	0.368	36.8%


www.wjpls.org Vol 10, Issue 11, 2024. ISO 9001:2015 Certified Journal 470



LDH Cytotoxicity Assay Results

Treatment	Concentration (µM)	Absorbance(565 nm)	Cell Viability (%)
Control (Vinblastine)	-	1.000	100%
Gemcitabine elaidate	1	0.230	23.0%
	5	0.437	43.7%
	10	0.744	74.4%

www.wjpls.org Vol 10, Issue 11, 2024. ISO 9001:2015 Certified Journal 471

DISCUSSION

The assays employed—MTT, CellTiter-Glo, Alamar Blue, SRB, and LDH Cytotoxicity—provide a holistic view of Gemcitabine elaidate's cytotoxic profile. The results indicate that Gemcitabine elaidate has a significant inhibitory effect on cell viability in a concentration-dependent manner. At higher concentrations (10 μM), the compound demonstrated up to 63.1% cell death compared to the control, highlighting its strong cytotoxic potential.

In the MTT and Alamar Blue assays, which measure metabolic activity and cell proliferation, Gemcitabine elaidate exhibited decreased absorbance values correlating with reduced cell viability. The CellTiter-Glo assay further confirmed this by showing a decline in luminescence, indicative of lower ATP levels and diminished cellular activity. The SRB assay, which assesses total protein content, supported these findings by displaying a marked reduction in protein synthesis in treated cells.

Interestingly, the LDH cytotoxicity assay revealed a significant increase in LDH release, suggesting that Gemcitabine elaidate induces membrane damage and cell lysis at higher concentrations. These findings suggest that the compound's cytotoxic effects may be due to a combination of metabolic disruption, inhibition of protein synthesis, and direct cytolytic activity.

CONCLUSION

This study demonstrates that Gemcitabine elaidate exerts a potent cytotoxic effect on Transitional cell carcinoma cell lines, particularly at higher concentrations. The reduction in cell viability and increase in cytotoxic markers suggest that Gemcitabine elaidate could be an effective agent in combination chemotherapy regimens, potentially improving outcomes in patients resistant to standard treatments. Further in vivo studies and clinical trials are recommended to confirm its therapeutic potential and establish optimal dosing strategies.

BIBLIOGRAPHY

- Al-Lami, R. A., Sanders, M. L., Piers, L., & Harbeck, M. LC-MS-based profiling of cellular responses to tyrosine kinase inhibitors in renal cell carcinoma. *Journal of Proteomics Research*, 2020; 19(3): 525-534.
- 2. Bao, Y., Li, X., & Xu, Y. Comparative metabolic profiling of sunitinib and pazopanib in renal cell carcinoma using LC-MS/MS. *Cancer Metabolomics*, 2019; 14(2): 45-56.
- 3. Bayat, H., Akbarzadeh, M., & Shadjou, N. Investigating the molecular interactions of new sunitinib analogs with cancer cell lines using LC-MS-based metabolomics. *Biochemical Pharmacology*, 2020; 163(1): 120-131.
- Chen, Y., Zhao, X., & Li, M. Development of LC-MS-based targeted metabolomics for biomarker discovery in Transitional cell carcinoma. *Clinical Chemistry and Laboratory Medicine*, 2021; 59(5): 803-812.
- 5. Cho, Y. K., Kwon, T. H., & Kim, Y. S. Mass spectrometry-based metabolomic profiling reveals differential drug responses in renal cell carcinoma cell lines. *Cancer Science*, 2022; 113(7): 2547-2556.
- 6. Deng, C., Zhang, X., & Gao, M. LC-MS-based analysis of lipid metabolism in renal cancer cells treated with tyrosine kinase inhibitors. *Journal of Lipid Research*, 2021; 62(2): 100-110.
- 7. Ding, J., Jin, G., Wang, H., & Chen, Y. Profiling cellular responses to multi-target kinase inhibitors in renal cell carcinoma using LC-MS/MS. *Molecular Cancer Therapeutics*, 2020; 19(5): 1194-1203.
- Guo, W., Zhang, H., & Wang, X. LC-MS-based metabolomics reveals mechanisms of drug resistance in renal cell carcinoma. *Journal of Cancer Research and Clinical Oncology*, 2021; 147(9): 2567-2579.
- 9. He, Q., Chen, H., & Liu, Y. Quantitative proteomics and metabolomics analysis of renal cancer cells treated with kinase inhibitors using LC-MS. *Journal of Proteome Research*, 2020; 19(4): 1023-1035.

- 10. Huang, C., & Zhang, Y. Unraveling the metabolic alterations induced by tyrosine kinase inhibitors in renal cell carcinoma using LC-MS/MS. *Metabolomics*, 2019; 15(10): 134-145.
- Kim, S. J., Lee, Y. H., & Park, S. Integrated proteomics and metabolomics analysis of renal cell carcinoma cells treated with lenvatinib using LC-MS. *Journal of Proteomics*, 2022; 248: 104363.
- Li, W., & Liu, M. LC-MS-based lipidomics profiling reveals metabolic alterations in renal cell carcinoma under targeted therapy. *Analytical and Bioanalytical Chemistry*, 2019; 411(18): 3869-3881.
- Liao, L., Li, Y., & Zhao, J. A comprehensive LC-MS approach to study drug-induced alterations in renal cancer cell metabolism. *Journal of Pharmaceutical and Biomedical Analysis*, 2021; 192: 113704.
- 14. Lin, Q., Wang, H., & Huang, Y. Metabolomic profiling using LC-MS for assessing responses to tyrosine kinase inhibitors in renal cell carcinoma. *Cancer Biology & Medicine*, 2020; 17(3): 626-639.
- 15. Liu, Z., Zhang, X., & Wang, J. Identification of biomarkers for early detection of renal cancer using LC-MS-based proteomics. *Clinical Proteomics*, 2021; 18: 19-30.
- Rasheed, A.; Farhat, R. Combinatorial Chemistry: A Review. Int. J. Res. Pharm. Sci. 2013; 4: 2502–2516.
- 17. Anas Rasheed*, Osman Ahmed. UPLC Method Optimisation and Validation for the Estimation of Sodium Cromoglycate in Pressurized Metered Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 18-24, http://dx.doi.org/10.21477/ijapsr.v2i2.7774
- Anas Rasheed*, Osman Ahmed. UPLC Method Development and Validation for the Determination of Chlophedianol Hydrochloride in Syrup Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 25-31. http://dx.doi.org/10.21477/ijapsr.v2i2.7775
- Anas Rasheed*, Osman Ahmed. Validation of a Forced Degradation UPLC Method for Estimation of Beclomethasone Dipropionate in Respules Dosage Form. Indo American Journal of Pharmaceutical Research, 2017; 7(05).
- Anas Rasheed*, Osman Ahmed. Validation of a UPLC method with diode array detection for the determination of Noscapine in syrup dosage form, European Journal of Pharmaceutical and Medical Research, 2017; 4(6): 510-514.
- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Triamcinolone in syrup dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3,4: 200-205.
- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Pholcodine in bulk dosage form. European Journal of Biomedical and Pharmaceutical Sciences, 2017; 4, 6: 572-579.

- 23. Anas Rasheed*, Osman Ahmed. Analytical method development and validation for the determination of Codeine in syrup dosage form using UPLC technology. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 5: 141-145.
- 24. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Fluticasone propionate in nasal spray inhaler dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 5: 168-172.
- 25. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Acetylcysteine in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 485-491.
- 26. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Ciclesonide in dry powder inhaler dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 523-529.
- 27. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Dextromethorphan in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 548-554.
- 28. Anas Rasheed*, Osman Ahmed. Analytical Development and Validation of a StabilityIndicating Method for the Estimation of Impurities in Budesonide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 46-54. http://dx.doi.org/10.21477/ijapsr.v2i3.8100
- 29. Anas Rasheed*, Osman Ahmed, Analytical Separation and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in Ipratropium Bromide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 55-63. http://dx.doi.org/10.21477/ijapsr.v2i3.8101
- 30. Ma, W., Wu, H., & Zheng, H. Analysis of tyrosine kinase inhibitor effects on renal cancer cell metabolism using LC-MS. *Journal of Chromatography B*, 2022; 1208: 123438.
- 31. Mei, Z., Huang, J., & Chen, Z. LC-MS-based metabolomics reveals differential metabolic signatures in renal cell carcinoma under treatment. *Journal of Proteomics Research*, 2021; 20(7): 3215-3226.
- 32. Peng, X., Liu, Y., & Deng, Y. Metabolomic analysis of cabozantinib-treated renal cancer cells using LC-MS. *Cancer Medicine*, 2020; 9(8): 2771-2780.
- 33. Qian, Y., Wang, W., & Zhang, X. Proteomics and metabolomics analysis of renal cell carcinoma cells treated with kinase inhibitors using LC-MS. *Journal of Proteomics*, 2021; 233: 104044.
- 34. Shi, H., Liu, C., & Xu, M. Exploring metabolic changes induced by tyrosine kinase inhibitors in renal cancer cells with LC-MS-based metabolomics. *Journal of Cancer Research*, 2019; 145(3): 523-534.

- 35. Sun, X., Li, H., & Yang, X. Targeted metabolomics of Transitional cell carcinoma using LC-MS reveals potential biomarkers for early detection and treatment monitoring. *Metabolomics*, 2022; 18(5): 35-48.
- 36. Tan, J., Wang, C., & Zheng, L. LC-MS-based metabolomics reveals the impact of sunitinib analogs on renal cancer cell metabolism. *Journal of Chromatography A*, 2020; 1612: 460645.
- 37. Wang, H., Li, Y., & Guo, X. Quantitative LC-MS analysis of sunitinib-induced metabolic changes in renal cell carcinoma. *Journal of Cancer Metabolism*, 2021; 9(2): 134-145.
- 38. Yang, F., & Yu, G. Profiling metabolic alterations in renal cancer cells treated with lenvatinib using LC-MS/MS. *Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease*, 2019; 1865(10): 2636-2645.
- 39. Zhang, L., Chen, S., & Wang, W. LC-MS-based metabolomics reveals metabolic reprogramming in renal cancer cells treated with pazopanib. *Cancer Metabolomics Research*, 2020; 12(6): 256-270.