BIOTRANSFORMATION OF STEROLS BY ACTINOBACTERIA TO PRODUCE PHARMACEUTICAL PRODUCT

Syeda Fareeha Tauheed, Dr. Sikander Ali*, Zannara Mustafa and Sana Ashraf

Institute of Industrial Biotechnology, GC University Lahore, Pakistan.

*Corresponding Author: Dr. Sikander Ali
Institute of Industrial Biotechnology, GC University Lahore, Pakistan.

ABSTRACT

This review consists two parts. In the first part of review we enhance the main aim of the development of pharmaceutical industry by introducing micro biotechnological process on industrial scale and wipeout the many-level chemical coalescence. Also, this article elaborates on the current development of micro sterols biotransformation system. Actinobacteria, which has considerable importance for the production of hormonal drugs (pharmaceutical product) also has main role as a catalyst in the steroid bioconversion and the development of biotechnology. The ability to activate the transformation process of sterol substrate in a broad way, it is feasible to expect the effective use of these microorganism in the advancement of new technologies on the production of pharmaceutical steroids substrate. This article is first attempt to channelize the data on the ability of Actinobacteria to activate the distinct reaction of many biotransformation of steroid such as hydroxylation, reduction and introduction of double bonds, oxidation of steroids, reduction of hydrocarbon (ketones) and degradation, with focus on the importance of biotechnological process and analysis of steroid conversion over the last decade year. The second part of this review precisely emphasis in the location of new enzymatic approaches such as cleavage of steroid side chain.

KEYWORDS: Steroid, Microbial transformation, Side-chain degradation, Hydroxylation Dehydrogenation, Selective cleavage.

INTRODUCTION

Klaus Kieslich elaborate the phenomenon of biotransformation as “chemical reactions by microorganisms or enzymes” (Kieslich, 1985). Later this definition of biotransformation was updated, and primarily focus on knowledge that related with the compounds of microbial transformations of steroid in case of differentiate the phenomenon of microbial transformation from that of bioconversion and also biodegradation (Lilly, 1984).

Previously, for the preparation of compounds many chemical processes are used but now microbial transformation is more significant arsenal for the synthesis of product, which may have been complicated otherwise to produce by ordinary synthetic processes. For the bioconversion of steroids this transformation has been significantly used (Charney and Herzong, 1976). In many past years, Biotransformation is an introductive tool in pharmaceutical industry for the synthesis of many drugs, hormones and antibiotics (Aharnowitz and Choe, 1981). The main benefit of the microbiological conversion is to nullify the considerable chemical process lie in the area of their mild reaction conditions. The main aim of biotransformation is to emphasis on the precise reaction with minimum of side reaction. In order to produce some functional products, the selection of biocatalysts is more significant approach under relatively gentle conditions contrast to its chemical catalyst equivalent to make biocatalysts which are more fascinating and revolutionary (Mark and Flashman, 2016).

These transformations have significant role in the region of steroid and antibiotics. In common contingency, the decrement of cholesterol by microorganism is we defined and famous process. In 1913, Søhagen and et al elaborate the process of degradation of cholesterol including microorganism such as Nocarida (Turftt, 1944) and Mycobacterium from soil and Aerobacter aerogenes and Pseudomonas jaegeri. The current study on this process of degradation of cholesterol is very limited and has ability to improve this knowledge. A well-known tracer experiment indicates us that divide the ring might pave the way the cleavage of steroid chain (Stadtman, 1954). The problem of information about the cleavage of cholesterol is still intricate, doubtful and
unsettled. In few years, many research group have been performed experiments to break the selective cleavage of sterol chain by microorganism and to prepare the sterol hormones from steroid but none of them are successful. So, it is great challenging problem for the research to breakdown the cleavage of sterol chain and for this purpose screening of microorganism is carried out (Arima, 1969). This review also explains the potential to break the cholesterol by Actinobacteria and the degradation as well.

Steroid
The scope of steroids is expanded in the kingdom of animals and plants. The fundamental architecture of steroid constitutes of seventeen atoms of carbon designed in the form of a perhydrocyclopentanophenanthrene. These compounds alter significantly in architecture and include essential compounds such as cholesterol, insect molting hormones, corticoid hormones, sex hormones, antibiotics, vitamin D, cardiac aglycone and bile acids (Bhatti and Khera, 2012).

Steroid biotransformation is a multimillion dollar industry and inhabited a considerable position among the preparation of pharmaceutical products that are mainly used for curing and averting diseases of different groups in endocrinology, oncology, rheumatology, gynecology, etc. (Fernandes et al., 2003). A distinct type of steroids is majorly utilized as anti-inflammatory, diuretic, anabolic as well as contraceptive and anti-androgenic. Some steroids are used as immunosuppressive while others act as presentational and anticancer agents, and several other applications (Ahmed et al., 1992). These steroids are also considerable to utilized in the cure of breast cancer as an also in prostate gland cancer (Diaz-Chico et al., 2007). Their role in the nursing of hypercortisolism also known as adrenal insufficiency (Hohnston, 1987) are significant as a replacement agent. Considerably for the prevention of coronary heart diseases (Frye and Leonard, 1987) anti-fungal (Chung et al., 1998) agents are widely used. Their important used in the cure of AIDS, these steroids are used in anti-obesity agent as an active ingredient. Currently, in modern research a glycoside which as steroid executed anti-viral activity on herpes virus (Arthan et al., 2002). The scope of new steroids in business point of view is limited in now days. Whereas their scope can be enhanced to obtain desired metabolites which is active ingredient of novel steroids. In pharmaceutical industry, production of steroids has great importance by biotechnology. According to commerce point of view steroid production is second significant source of antibiotic production (Brown, 1984). Moreover, special microbial transformation steps have been involved for the production of novel hormonal steroids as drugs. The relatively broad nomenclature of efficient steroid drugs is continually expanding. Highly complex structure of steroids molecules renders the use of biocatalysts for the production of pharmacologically important steroid drug intermediates of note, several preparations administered for life-saving indications have no non-steroid analogues. Large scale production of hormonal steroid drugs is based on combining both of biotechnology (i.e. microbial technology) and chemical products (Fernandes, 2003). There is a specific rule in which whole cells are used to develop the biotechnological equipment. The benefit of this biotechnology is that, it is more economical then enzymes (considering isolation, purification and stabilization procedures).

General scheme for the production of steroid drug
Steroid drugs are synthesized mainly by two routes: chemical or microbial routes. However, the scheme of production of both routes involve conversion of steroid precursors to drug intermediates and subsequent conversion of intermediates to steroidal drug as shown in Figure 1.

![Figure 1: General Steps of Steroid Biotransformation.](image)

Microbial transformations as compared to chemical process degrade the intricate side chains of precursor steroids in only single step and incorporate desirable alterations in steroidal nucleus. Biotransformation of steroids and chemical product and entail numerous ways and also required the special reagents that have drawback health hazard and basis of serious ejection issues. The conversion of precursor steroids through microbes as compared to chemical process is less expensive, non-toxic and less time consuming. During bioconversion, microbes provide enzymes which act upon and convert organic compounds or modify it. Microbial transformations are region-specific as well as stereo-specific, however naturally hydrocarbons are transform into required isomers of synthesis product including simple enzymes acted as a catalyst based chemical reactions in the microbial cells. More valuable an important biotechnological use in microbial transformation of active compounds which has capability and application in broader scope of the microorganisms
involving fungi, bacteria, and microalgae in transforming steroid substrate into the pharmacologically or many other fruitful intermediates (Wilson, 1999).

Biotransformation of Sterol

The significance of microbial steroid transformation became evident when in 1950 Upjohn and et al discovered a valuable product in which at the location in progesterone 11-alpha hydroxyl group is introduced by a Rhizopus. That’s why due to this reaction, a new absurd way which is a path to cortisone was discovered that established a novel and less economical means of producing corticosteroids and their synthetic correspondents and analogues. This discovery takes researchers to elaborate of various other conversion using bacteria and fungi (Mahato, 1989).

One of the major starting materials for steroid industry is the natural steroid sapogenin, diosgenin. However, the route established in its commercial use is chemical conversion of diosgenin to 16-dehydropregnenolone acetate and further synthesis to pharmaceutical product (mainly steroids) (Hanson, 2005). Now many new steroids of useful therapeutic importance can be produced from diosgenin microbial transformation (Wang et al., 2011). On the other hand, chemical modification of sapogenins to valuable steroidal products has many disadvantages such as higher costs and low yield, multistep syntheses, wastage of land resources, and enervation of wild plant resources (Wang et al. 2011).

Alternatively, natural sterols can be used as starting materials for steroid industry typically steroid 3β-alcohols with the 5(6)- double bond and aliphatic side chain at C-17. Sterols are important constituents of cell membrane playing an important role in membrane fluidity and flexibility, cell differentiation and proliferation (Fernandes and Cabral, 2007). Since the 1980s, microbial transformation of phytosterol remains a focus of research in the field of steroids. Recently, a progressive amount of pharmacologically active steroids is manufactured in large scale through the initial microbial transformation of sterols (Abbott, 1979) such as in pharmaceutical industry the production of steroid hormonal drugs, cholesterol, Beta-sitosterol or campesterol can be selected to degraded by microorganisms, this special type of methodology known as biotransformation has grab elegant concentration that take to the production of many other beneficial phenomenon. Cholesterol is known as animal sterol mainly extract from animal fats and oil, used in the production of hormonal sterols. The primary source of these fat is pig fats (lard), cow, milk fat, tallow, fish oil. Sitosterol, stigmasterol, campesterol, and brassicosterol are rich plant sterols. They are called as phytosterols (plant sterols) mainly of soya origin, or produced from tall oil or pitch; sitosterol are broke up microbially to obtain 17-ketosterols. Ergosterol is a primary sterol of yeasts and fungi. For the manufacturing of teosterone, a male sex hormones (androgen) from cholesterol via a single step transformation process by microorganism was investigated (Liu and Lo, 1997). Incubation of cholesterol with “Mycobacterium sp. NRRL B-3805” caused in the development and isolation of testosterone. Sterol-containing wastes of agricultural, food and cellulose manufactures can be used for production of valuable steroid compounds without deep purification of phytosterols, and corresponding publications have grown in number over the last few years. Methods have been described for the manufacturing of androst-4-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD) from sterol-rich plant-derived sources, edible-oil producing wastes such as soybean oil deodorizer distillate (Olivares and Acevedo, 2011), rice bran oil materials (Sallam et al., 2008), sugar can mud (Abdel-salam et al., 2010), corn flour and soybean flour (Lin et al., 2009a).

Currently, major portion of the steroid bioconversions acted properly to utilize immobilized cell system including special type of reactions such as side chain cleavage. However, comparatively some research work has been canopied out for side chain cleavage in immobilized state, the inferences acquired so far apparent insurability and economical when analogized to free cells (Kieslich, 1985; Mahato, 1989). The rate of reaction of Biocatalysts usually more in aqueous solution of substrate, whereas water is a poor solvent and have ability to slow down the rate of reaction of biocatalyst for nearly all applications in industrial chemistry. Many research and reviews are indulged with the transformation of steroids by microorganisms such as biotransformation of sterols to forerunner of hormonal steroidal drugs have been in process in the past twenty years (Kieslich, 1985). Although, after 1985 particular cleavage of sterols has not been exclusive in spite of bulk to describe research and development of new biotechnologies. “This review dens specially with side chain cleavage of sterols and application of new biotechnologies in steroid biotransformation.”

Production of Key Intermediates From (Phyto) Sterols

The key intermediates produced after biotransformation of sterols include some C19 steroids such as AD, ADD, 9α-hydroxy-AD, testosterone, boldenone, as well as C22 steroids of pregnane series such as 20-carboxy-pregna-4-en-3-one, 20-hydroxymethyl pregna-4-en-3-one, and their respective 1-dehydro and 9α-hydroxyl analogs. AD and ADD are the most marketed intermediates that are required for the commercial preparation of valuable products such as corticosteroids, mineralocorticoids, oral contraceptives, and other pharmaceutical steroids. The market size of AD/ADD market size is over US$ 1 billion per year. These compounds can be produced in a single microbiological step from phytosterol. Testosterone were also produces by sterol-transforming actinobacteria in a single-step (Liu et al. 1997; Egorova et al., 2009). Using Mycobacteria, production of
boldenone from phytosterol has been reported to include two steps via intermediate of AD and subsequent 1-dehydrogenation of AD by *Fusarium sp.*

Apart from C19 steroids, valuable 23,24-dinorcholane derivatives were achieved from sterols biotransformation (Andor *et al*., 2006). These compounds are the significant precursors for corticosteroid synthesis. For example, 9α-hydroxy-C22 steroids can be easily converted to C21 corticosteroids by oxidative decarboxylation (Toro and Ambrus, 1990). Apparent advantages of microbial transformation of valuable precursors i.e. C19 and C22 from phytosterols are shorter process, environmentally friendly and low-cost procedures. However, the relatively low productivity and insufficient selectivity of the strains often remain the bottleneck in their industrial applications. There are many strains of microorganisms that have been described as biocatalysts of sterol biotransformation, e.g., *Arthrobacter spp.* (*Arthrobacter oxydans* 317 AL, *Arthrobacter rubbelus*), *Brevibacterium spp.*, *Pseudomonas spp.*, and *Rhodococcus spp.*, but their use necessitates the addition of inhibitors to avoid steroid nucleus degradation (Abd-elsalam *et al*., 2010; Tong and Dong, 2009).

Over the past 100 years, efforts have been made to discover organisms that are capable to convert phytosterols to key steroid precursor efficiently. For example, an AD-producing *Aspergillus oryzae* NCIM 634 strain was selected as an efficient organism (Malaviya and Gomes, 2009); a strain isolated by soil and identified as *Fusarium moniliforme*, converted phytosterol present in corn-flour and soybean flour to AD (Lin *et al*., 2009a); ADD production from cholesterol was also shown for *Chryseobacterium gleum* ATCC 35910 (Chaudhari *et al*., 2010). However, Actinobacteria of the genera Mycobacterium and Rhodococcus considered as the most efficient AD/ADD producers (Malaviya and Gomes, 2009).

Biotranformation of Sterols by Actinobacteria

Actinobacteria are prominent among the most efficient biocatalysts of steroid transformation. Actinobacteria are capable of effecting diverse types of steroid transformation, such as dehydrogenation, doubles bond isomerization, oxidation of steroid alcohols, hydrogenation of unsaturated bonds, reduction of steroid ketones, deacetylation and last but not least hydroxylation as well as complete degradation to carbon dioxide and water or partial decrimation of the side chain (of sterols, cholanic acids, steroids of the pregnane series) and other reactions. A remarkable number of *Actinobacteria* is able to degrade various sterol (Fernandes *et al*., 2003). A number of strains that are able to transform the side chains of various sterols, either as natural or UV mutants blocked in steroid ring cleavage or requiring inhibitors of steroid ring degradation enzymes are enumerated in Table 1. Some of these strains are or have been used to produce steroid intermediates from cheap sterol sources at industrial- or laboratory scale. At Schering, Germany, the transformation of phytosterols from natural plant resources by *Mycobacterium* sp. mutants has been stated to account for the production of 200 tons of AD and ADD annually (Schmid *et al*., 2001).

Table 1: List of Actinobacterial Strains and/or mutants capable of sterol side chain degradation.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Microorganism</th>
<th>Product(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>Mycobacterium phlei</td>
<td>4-androstene-3,17-dione</td>
<td>Stadtman et al., 1954</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Mycobacterium sp. NRRL B-3805</td>
<td>4-androstene-3,17-dione</td>
<td>Liu & Lee, 1997</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Arthrobacter simplex and Mycobacterium sp. NRRL B-3683</td>
<td>1,4-androstene-3,17-dione</td>
<td>Lee et al., 1993</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Rhodococcus equi</td>
<td>(i) 4-androstene-3,17-dione</td>
<td>Ahmed et al., 1993b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) 1,4-androstadiene-3,17-dione</td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Mycobacterium sp.</td>
<td>(i) 4-androstene-3,17-dione</td>
<td>Smith et al., 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) 1,4-androstadiene-3,17-dione</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iii) 17β-hydroxyandrosta-1,4-dien-3-One</td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Mycobacterium sp.</td>
<td>17β-hydroxy4-androsten-3-one</td>
<td>Liu et al., 1997</td>
</tr>
<tr>
<td>2α,3α-dihydroxy-5α-cholestan-6-one</td>
<td>Mycobacterium vaccae</td>
<td>(i) 1,4-androstadiene-3,17-dione</td>
<td>Ahmed et al., 1993b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) 4-androstene-3,17-dione</td>
<td></td>
</tr>
<tr>
<td>Ergosterol ergosterol-3-acetate</td>
<td>Mycobacterium sp. VKM Ac-1815D</td>
<td>(i) 4-androstene-3,17-dione</td>
<td>Dovbnya et al., 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) 1,4-androstadiene-3,17-dione</td>
<td></td>
</tr>
</tbody>
</table>
Sikander et al.

<table>
<thead>
<tr>
<th>Steroid</th>
<th>Microorganism</th>
<th>Formula</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ergosterol</td>
<td>Mycobacterium sp. NRRL B-3805</td>
<td>(i) 4-androstene-3,17-dione (ii) 1,4-androstadiene-3,17-dione</td>
<td>Ambrus et al., 1995</td>
</tr>
<tr>
<td>19-hydroxycholesterol</td>
<td>Rhodococcus mutant k-3</td>
<td>(i) estra-1,3,5(10)-triene-3-ol (ii) 2(3-hydroxy-1,3,5(10)-estra-triene-17-y)-propionic acid (iii) 2-methyl-6(3-hydroxy-1,3,5(10)-estraetriene-17-yl)-heptanoic acid (iv)2(3-hydroxy-1,3,5(10)-estratetraene-17-yl)-propionic acid</td>
<td>Murohisa & Iida, 1993a</td>
</tr>
<tr>
<td>19-hydroxycampesterol</td>
<td>Rhodococcus mutant k-3</td>
<td>(i)(2-hydroxy-1,3,5(10),17-estratetraene-17-y1)-propionic acid (ii) 2,3-dimethyl-6(3-hydroxy-1,3,5(10)-estratetraene-17-yl)-heptanoic acid</td>
<td>Murohisa & Iida, 1993a</td>
</tr>
<tr>
<td>lanosta-7,9(11)-dien-3β-ol</td>
<td>Mycobacterium sp. NRRL B-3805</td>
<td>4,8(14)-androstadiene-3,17-dione</td>
<td>Weber et al., 1992</td>
</tr>
<tr>
<td>lithocholeic acid</td>
<td>Mycobacterium sp.</td>
<td>20α-hydroxy-4-methylpregnene-3-one</td>
<td>Weber et al., 1992</td>
</tr>
<tr>
<td>3β-methoxyergosta-5,7,22-triene</td>
<td>Mycobacterium</td>
<td>3β-methoxy-methoxy-21-hydroxy-20-methyl-5,7-pregniadiene</td>
<td>Weber et al., 1992</td>
</tr>
<tr>
<td>β-sitosterol</td>
<td>Arthrobacter oxydans</td>
<td>(i) 3-oxo-4-cholene-24-oi acid (ii) 27-nor-4-cholesten-3,24-dione‘</td>
<td>Dutta et al., 1992</td>
</tr>
<tr>
<td>β-sitosterol</td>
<td>Rhodococcus equi k-3</td>
<td>(i) 3-oxo-1,4-ergostadiene-26-oic acid (ii) 3-oxo-4-ergostene-26-oic acid (iii) 20-carboxy-4-pregnen-3-one (iv)20-carboxy-1,4-pregniadiene-3-one (v) 4-androstene-3,17-dione (vi) 1,4-androstadiene-3,17-dione</td>
<td>Murohisa & Iida, 1993a</td>
</tr>
<tr>
<td>β-sitosterol</td>
<td>Mycobacterium sp.</td>
<td>9α-hydroxy-4-androstene-3,17-dione</td>
<td>Borman et al., 1992</td>
</tr>
<tr>
<td>β-sitosterol</td>
<td>Mycobacterium NRRL B-3683</td>
<td>1,4-androstadiene-3,17-dione</td>
<td>Roy et al., 1992</td>
</tr>
<tr>
<td>β-sitosterol</td>
<td>Nocardia sp. M 29</td>
<td>(i) 4-androstene-3,17-dione (ii) 1,4-androstadiene-3,17-dione</td>
<td>Martin & Wagner, 1976</td>
</tr>
<tr>
<td>solasodiene</td>
<td>Mycobacterium sp. NRRL B-3805</td>
<td>4-androstene-3,17-dione</td>
<td>Shukla et al., 1992</td>
</tr>
<tr>
<td>sterol</td>
<td>Mycobacterium fortuitum</td>
<td>9α-hydroxy-4-androstene-3,17-dione</td>
<td>Seidel and Hoerhold, 1992</td>
</tr>
<tr>
<td>sterol</td>
<td>Mycobacterium NRRL B-3805</td>
<td>4-androstene-3,17-dione</td>
<td>Lee, 1990</td>
</tr>
<tr>
<td>sterol</td>
<td>Mycobacterium fortuitum</td>
<td>9α-hydroxy-4-androstene-3,17-dione</td>
<td>Atrat et al., 1991</td>
</tr>
<tr>
<td>sterol</td>
<td>Mycobacterium sp.</td>
<td>(i) 4-androstene-3,17-dione (ii) 1,4-androstadiene-3,17-dione</td>
<td>Zhang et al., 1992</td>
</tr>
</tbody>
</table>

Sterols that exist naturally, such as cholesterol and Phytosterols, are utilized as hydrocarbon and energy sources. They have common physiological habitats of some actinomycetes, such as Actinobacteria, Mycobacteria and Rhodococci (Wipperman, 2014). In M. tuberculosis disease, which is pathogenic strains are catabolism of steroids is highly concerned due to its close relevance to pathogenesis and persistence. Interestingly, sterol metabolism in nonpathogenic microorganisms generates metabolites that can be used as ideal precursors to synthesize steroids as pharmaceutical products (Figure 2; Donova et al., 2012). Commonly, C19 steroids and C22 steroids (22-hydroxy 23, 24- bisnoocholenic steroids, HBC), are the two major significant intermediates, that can be synthesis from the metabolism of steroids. The only main difference in these intermediates steroids is the side chain carbon located 17 (Figure 2). In pharmaceutical industrial manufacturing of C19 steroids as well as androst-4-ene-3,17-dione (AD), androst- 1,4-dien-3,17-dione (ADD) and 9α-hydroxy-androst-4-ene-3,17-dione (9-OHAD) , all of them are used to produce sex and adrenocortical hormones which may have been largely manufactured. The main reason of this steroid production is due to the
successful development of pharmaceutical strains by metabolic engineering or mutant breeding (Figure 2). The optimization value of the sterol C22 is very less, is the case of ideal industrial strains that have yet to be organized. However, few C22 steroids, including 22-hydroxy-23,24-bisnorcho-1,4-dien-3-one (1,4-HBC), 22-hydroxy-23,24-bisnorcho-1,4-dien-3-one (1,4-HBC) and 9,22-dihydroxy-23,24-bisnorcho-4-ene-3-one (9-OH-HBC), have very high significant precursors in synthesizing progestational and adrenocortical hormones (Figure 2). (Donova et al., 2009).

![Figure 2: An overview of Biotransformation of Sterols into Steroidal Pharmaceuticals.](image)

Hydroxylation of Some Sterols by Actinobacteria

Actinobacteria has tendency to move hydroxyl groups at different location of the nucleus of steroid as shown in Figure 2. The 9α location of hydroxyl group is carried out by mentioning the matching in Nocardiia, Rhodococcus, and Mycobacterium. A ternary 9-KSH complex comprising a flavoprotein reductase and two ferredoxin proteins was isolated from Nocardiia sp. M117 (van der Gieze et al., 2007). In Arthrobacter oxydans 317, the “9α-hydroxylase and 3-ketosteroid-1-dehydrogenase (3-KSD)” are both plasmid-encoded (Dutta et al., 1992). The 9-KSH of Rhodococcus erythropolis SQ1 includes a dimeric [2Fe–2S] monooxygenase type IA component; the genes encoding 9-KSH have been identified (kshA and kshB). When any of the genes was deleted, the resulting mutants lost the ability to grow on androst-4-ene-3,17-dione (AD) or androsta-1,4-diene-3,17-dione (ADD), but retained the capacity for using 9α-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) as a substrate. Of interest, deletion of kshA did not affect the process of degradation of sterol. The process of degradation continues and held complete with AD or without ADD (intermediates), which shows that the event of 9-KSH was preserved. Contra positively the removal of kshB inference in a whole loss of capability to cleave the steroid side chain; the mutants retained only the capacity for oxidizing sitosterol to sitost-4-ene-3-one. It has been pointed that the gene kshB is either involved in 9α-hydroxylation of sterols as a constituent of the tentative enzyme, 9-KSH, or represents a part of the C-26-hydroxylation system, which initiates side chain degradation of sitosterol (Donova et al., 2007).
Identification of novel biological activities of 7α-hydroxysteroids—which serve as antiglucorticoid agents or means of diagnosing and treating neoplastic, neurological/mental, and immune disorders, as well as Alzheimer’s disease—justifies increasing interest in and search for strains of Actinobacteria with high 7α-hydroxylase activity. Proactinomyces sp. is capable of catalyzing 7-hydroxylation of cholesterol (whether the hydroxyl is at position α or β has not been determined). The search for microbial biocatalysts capable of hydroxylating sterols (both known and newly synthesized) is a continual process driven by the high physiological activity of hydroxy derivatives of sterols. However, recent progress in selecting new organisms with unusual region and stereospecific activity has not been significant (Donova et al., 2007).

Dehydrogenation of Sterols by Actinobacteria

Actinobacteria has a distinct feature i.e the ability to dehydrogenate C-C bonds within steroid nucleus. Corynebacterium, Micromonospora, Mycobacterium, Nocardia, Nocardioides, Rhodococcus, and Streptomyces having this feature. Strains capable of introducing Δ1(2), Δ4(5),Δ7(8), Δ8(9), Δ9(11), and Δ16(17) double bonds (ATR et al., 1991; van der Gieze et al., 2007).

Data from the literature indicate that Actinobacteria contain several isoforms of 3-KSD. Selective deletion of the gene ksdD, which encodes 3-KSD 1 of R. erythropolis SQ1, did not affect the ability of the resulting mutant to grow on AD, ADD, and 9-OH-AD. Biochemical data demonstrated the presence of another 3-KSD isoform, designated 3-KSD 2. This enzyme was inactivated in R. erythropolis RG1-UV29, which was obtained by UV-mutagenesis of the strain R. erythropolis RG1. Deletion of both genes, i.e., those encoding 3-KSD 1 and 3-KSD 2, blocked the growth on AD and 9-OH-AD, without affecting the growth on ADD. Thus, both isoenzymes were demonstrated to be involved in sterol degradation in R. erythropolis SQ1 in such a way that the presence of at least one of them was sufficient for the degradation of the sterol nucleus. The ability of some Actinobacteria (N. restrictus, etc.) to introduce a Δ17(20) bond in the course of sterol transformation is also reported in this work (Mahato et al., 1989; van der Gieze et al., 2007; Donova et al, 2007).

Oxidation of Sterols by Actinobacteria

The oxidation of sterols involved in sterol degradation have been studied at the biochemical as well as genomic level using Actinobacteria. An accepted metabolic pathway for sterol degradation by actinobacteria was recommended based on the documentation of their intermediates. To date, however, not all enzymes involved in oxidation of sterols have been fully identified. Considerable progress in sterol bioconversion studies was achieved due to the excellent works by van der Gieze’s team on the disclosure of cluster of genes involved in sterol degradation in Rhodococcus and Mycobacterium (Petrusma et al., 2000). Those works initiated intensive research into cholesterol catabolism by Mycobacterium tuberculosis H37Rv and other Actinobacterial pathogens and are of importance at the discovery of new targets for the therapy of tuberculosis and other pulmonary diseases (Ouellet et al., 2011). The acute role of cholesterol catabolism for these infections has been also confirmed by other authors (Nesbitt et al., 2010). On the other hand, these data are significant for the future generation of strains capable of producing important steroid precursors, and for the regulation of process selectivity. In general, degradation of sterols by Actinobacteria involves three main routes: (i) uptake of sterol, (ii) removal of aliphatic side chain at C17 (Atrat et al., 1991; Donova, 2009) and (iii) steroid nucleus oxidation.

The mechanism of sterol uptake by actinobacteria includes a direct contact of the cell surface with hydrophobic sterol particles. Cells adhere to sterol particles and gradually imbied into them. Bio-surfactants or bio-emulsifiers produced by actinobacteria extracellularly can increase the bioavailability of the substrate. A flexible mesophase formation in the contact zone, composed of extracellular components where sterols are partially solubilized, was hypothesized earlier (Atrat et al., 1991). A confirmation was obtained that destruction of the cell outermost leaflet of the lipid bilayer, full or partial removal of non-covalent bound lipids at the preserved intactness of the basal cell wall skeleton can facilitate steroidal substrate influx and metabolite efflux and result in the enhancement of steroid Participation of the Mce4 steroid transporter system in active transport of sterols into the cell was evidenced for Rhodococcus jostii RHA1, whose transcription was upregulated during growth of strain RHA1 on cholesterol on contrast to pyruvate grown cells (van der Geize et al., 2007). The cluster consists of an operon of 11 genes that encodes two permeases (supA and supB) and the Mce4A-Mce4I proteins that penetrate the outer layer of the mycolic acids and possibly are involved in substrate binding, together constituting a complex ATP-binding cassette (ABC) transporter system. The ATPase domain, however, was neither encoded by the mce4 locus, nor was it found elsewhere in the strain RHA1 cholesterol catabolic gene cluster (van der Geize et al., 2007; Mohn et al., 2008).

The mceG gene of ‘M. tuberculosis’ encodes an ATPase
domain which has been shown to interact with proteins determined by the mce1 and mce4 loci, but is not located proximal to either of the two loci (Joshi et al., 2006). In strain RHA1, ro01974 and ro02744 encode MceG orthologs, therefore, either one of them or both may be involved in the Mce4 transport system (Mohn et al., 2008). The Mce4 transport system mediates sterol uptake specifically, since mutagenesis studies with genes from the mce cluster revealed that they are vital for growth of strain “RHA1” on sterols, including cholesterol, but not other steroids (Mohn et al., 2008). It cannot be ruled out that the Mce4 system also transports various amines, but most likely other mechanism(s) for uptake of steroids exist that are either specific for steroids or that can complement steroid uptake in strain RHA1 mce4 gene deletion mutants (Mohn et al., 2008). It was proposed that extracellular cholesterol oxidase may contribute in sterol transportation into the actinobacterial cells.

Initial steps of sterol core oxidation

Biotransformation of sterols is initiated by alteration of the 3β-ol-5-ene- to 3-oxo-4-ene moiety. The role of cholesterol oxidase (or 3β-hydroxysteroid oxidase) in this process has been elucidated. This enzyme is able to oxidize the β-hydroxyl group at C3 and further isomerization of the Δ5 double bond to a Δ4 (Figure 3). Cholesterol oxidase (CHO) enzymes are flavoproteins in nature that can either contain a covalently or non-covalently bound FAD (Vrieling and Ghislia, 2009). Moreover, they may function outside or inside the cell, depending on the type of organism and enzyme used. Cholesterol oxidases transfer the hydrogen atoms to molecular oxygen from various steroid or sterol substrates, thus forming hydroxy peroxyde. Also, some cholesterol oxidases also perform hydroxylation reaction of cholesterol, eventually forming 4-cholesten-6β,8-ol-3-one from cholesterol. Many Actinobacteria produce cholesterol oxidase enzymes, including members of Rhodococcus (Navas et al., 2001; Fernández de Las Heras et al., 2011), Brevisbacterium and Streptomyces (Ishizaki et al., 1989). Also 3β-hydroxysteroid dehydrogenases (3β-HSD) are known to catalyze 3- keto-4-ene formation (Figure 6), in Nocardia sp. (Horinouchi et al., 1991) and M. tuberculosis (Yang et al., 2007). This enzyme uses NAD(P)+ as electron acceptor as a replacement for molecular oxygen and function intracellularly. The 3β-HSD enzyme Rv1106c of M. tuberculosis was shown to be active on cholesterol, pregnenolone and dehydroepiandrosterone, while the highest activities were found for the latter two compounds (Yang et al., 2007) which are C21 and C19 steroids, respectively, and are expected pathway intermediates of cholesterol degradation. Therefore, it is likely that in M. tuberculosis cholesterol side chain degradation occurs prior to ring oxidation. Recent mutational and biochemical studies have shown that in R. jostii RHA1 C26 hydroxylation is the obligate first step in cholesterol degradation, prior to the action of CHO or 3β-HSD, while in R. rhodochrous DSM43269 there was no clear preference for either of these two reactions (Rosloniec et al., 2009).

Cholesterol oxidase ChoD is not crucial for sterol catabolism in the fast-growing AD producing Mycobacterium sp. VKM Ac-1815D strain, and the knock-out of choD gene does not abrogate sterol ring-A oxidation (Ivashina et al., 2012). Similar conclusions were made earlier for Mycobacterium smegmatis mc2 155 (Uhai et al., 2011a). In Rhodococcus erythropolis CECT3014, cholesterol oxidase gene ChoG was shown to be a major inducible extracellular cholesterol oxidase, but its disruption did not alter cell growth on cholesterol (Fernández et al., 2011). However, in Streptomyces virginiae IB L-14, inactivation of cholesterol oxidase ChoL led to abrogate the oxidation of diosgenin to diosgenone and other 3-oxosteroids. Two cholesterol oxidases genes, ChoM1 and ChoM2, were identified in Mycobacterium neoaurum NwIB and described to be essential for consumption of phytosterol as a carbon source (Wei et al., 2010). In addition to its proposed function in sterol transport and A-ring oxidation, cholesterol oxidase can play a title role in the pathogenicity of ‗M. tuberculosis‘ H37Rv’ (Brzostek et al., 2009) and Rhodococcus equi (Navas et al., 2001), and along with other sterol-modifying enzymes can regulate the exceptional ability of pathogenic mycobacteria to stay alive in macrophages (van der Gieze et al., 2007).

It was reported that utilization of cholesterol in mycobacteria is controlled by two TetR-type transcriptional regulator genes: kstR and. KstR controls the expression of 83 cholesterol catabolism genes. These results were generally confirmed by recent results of Uhai with co-authors (2012) on the comparative transcriptome studies of M. smegmatis mc2 155 cells growing on cholesterol and glycerol as the only carbon sources. The microarray analyses publicized that total 89 genes were upregulated three times during the growth of strain on cholesterol with 39 catabolic genes. In R. jostii RHA1, the choD gene was shown to be a major inducible extracellular cholesterol oxidase, but its disruption did not alter cell growth on cholesterol (Fernández et al., 2011). However, in Streptomyces virginiae IB L-14, inactivation of cholesterol oxidase ChoL led to abrogate the oxidation of diosgenin to diosgenone and other 3-oxosteroids. Two cholesterol oxidases genes, ChoM1 and ChoM2, were identified in Mycobacterium neoaurum NwIB and described to be essential for consumption of phytosterol as a carbon source (Wei et al., 2010). In addition to its proposed function in sterol transport and A-ring oxidation, cholesterol oxidase can play a title role in the pathogenicity of ‘M. tuberculosis‘ H37Rv’ (Brzostek et al., 2009) and Rhodococcus equi (Navas et al., 2001), and along with other sterol-modifying enzymes can regulate the exceptional ability of pathogenic mycobacteria to stay alive in macrophages (van der Gieze et al., 2007).

It was reported that utilization of cholesterol in mycobacteria is controlled by two TetR-type transcriptional regulator genes: kstR and. KstR controls the expression of 83 cholesterol catabolism genes. These results were generally confirmed by recent results of Uhai with co-authors (2012) on the comparative transcriptome studies of M. smegmatis mc2 155 cells growing on cholesterol and glycerol as the only carbon sources. The microarray analyses publicized that total 89 genes were upregulated three times during the growth of strain on cholesterol with 39 catabolic genes organized in three specific clusters. The function of KstR and KstR2 as auto-regulated repressors of cholesterol degradation was supported.
Side-chain degradation

Side-chain degradation and steroid nucleus oxidation were confirmed to be independent processes, at least in actinobacteria, and the order of these processes can vary even in one genus (Rosloniec et al., 2009). The initial step of the side-chain oxidation of sterols (and other C27 steroids) is hydroxylation at C-26 (or C-27). The reaction is catalyzed by cytochrome P450 monoxygenase CYP 125 as shown for R. jostii RHA1, Mycobacterium bovis BCG, and M. tuberculosis H37Rv (Rosloniec et al., 2009). Further cleavage of the alkyl steroid side chain at C-17 was shown to proceed via the fatty acid β-oxidation process, the mechanism of which has been elucidated several decades ago, by identifying reaction intermediates that accumulated in natural or UV-mutagenized strains of Nocardioid and Mycobacterium that were blocked in various steroid nucleus degradation steps. The genes responsible for this process in actinobacteria constitute part of the sterol catabolic gene. It was deduced that sterol side chain degradation proceeds via a process similar to β-oxidation (Fujimoto et al., 1982a). The general mechanism of β-oxidation and the enzymatic steps involved are shown below (Figure 4).

Although the mechanism of steroid side chain degradation is well understood, very limited information is available on the genes and purified enzymes involved in the process: virtually all experiments were done using crude extracts from strains whose genomic sequence data is unavailable. The subject of microbial sterol side chain degradation is relevant for applications in the pharmaceutical industry and has been reviewed regularly (Kieslich, 1985; Fernandes et al., 2003). Recent studies elucidated the essential role of steroid coenzyme A ligase encoded by gene fadD19 in side-chain cleavage of C24 branched sterols with RG32 mutant of R. rhodochrous DSM43269. AD/ADD is unable to produce from cholesterol after deletion of fadA5 gene (Nesbitt et al., 2010).

Sterol Side Chain Activation

The cleavage of side chains of sterols like cholesterol is a stepwise process same as that of β-oxidation of fatty acids (Figure 5A). The first reaction of β-oxidation is activation of the sterol carboxylic acid moiety with CoA, catalyzed by steroid-CoA ligase. CoA ligase catalyzed reactions are driven by ATP hydrolysis and require Mg2+ as a cofactor. CoA activation of acyl substrates is a two-step process involving an enzyme-bound adenylated intermediate and thioester formation, where the AMP is replaced by CoA (Chang et al., 1997). A 65 kDa CoA ligase from Mycobacterium sp. NRRL B-3805 was purified to near homogeneity and is highly specific towards C26-carboxylic acid steroids (Chen, 1985). The CoA ligase was shown to be present as a single enzyme, while the rest of the β-oxidation enzymes were aggregated, forming a loosely bound complex (Chen, 1985). The gene encoding the steroid-CoA ligase, or any of the other β-oxidation enzymes involved, remained unidentified.

β-Oxidation Enzyme Complex

Further degradation of the CoA-activated sterol side chain has been demonstrated in crude extracts, involving a multi-enzyme complex consisting of an acyl-CoA dehydrogenase or oxidase, enoyl-CoA hydratase, 3β-hydroxyacyl-CoA dehydrogenase and thiolase (Chen, 1985). In Mycobacterium sp. NRRL B-3805, the first dehydrogenation step is performed by an FMN dependent acyl-CoA oxidase (Chen, 1985).

The next step in side chain degradation is hydration of the double bond by an enoyl-CoA hydratase. However, no enzymes or genes for this activity are presently known. The strain RHA1, gene cluster for cholesterol catabolism contains echA19, a gene encoding a putative enoyl-CoA hydratase involved in side chain degradation, was suggested to be responsible for the double bond hydration of sterol side chains (van der Geize et al., 2007). Though, this remains to be confirmed by experimental studies.

After the hydration step, another dehydrogenation reaction is performed, catalyzed by 3β-hydroxyacyl-CoA dehydrogenase. In Mycobacterium sp. NRRL-B3805, this reaction was shown to require NAD+ as a cofactor, but the enzyme has not been characterized in more detail (Chen, 1985).

The final reaction of a β-oxidation cycle is thiolic cleavage of the substrate. In the case of cholesterol side chain degradation, thiolase mediated C-C bond cleavage of carbons 24-25 and 22-23 results in formation of C24 and C22 steroids and release of propionyl-CoA and acetyl-CoA, respectively (Fujimoto et al., 1982a). The remaining 3-carbon side chain of the C22 steroid intermediate is then catalyzed by a mechanism different from β-oxidation, most likely involving a reverse aldol-lyase reaction (Fujimoto et al., 1982a).

C24-Branched Chain Sterol Side Chain Degradation

Degradation of C24-branched chain sterols, like the phytosterols β-sitosterol, campesterol and the fungal ergosterol, requires several additional enzymatic steps compared to cholesterol. Fujimoto et al. (1982b) used a cell-free system derived from Mycobacterium sp. NRRL B-3805 to demonstrate that the C24-branched side chains of β-sitosterol and campesterol are carboxylated at the C28 position, following C26 oxidation and CoA activation (Figure 5B). The carboxylase responsible for incorporation of HCO3- at the C28 position was not inhibited by avidin, an effective inhibitor of biotin dependent enzymes. This carboxylase thus appears to lack biotin or this prosthetic group is deeply buried inside the enzyme (Chen, 1985).

Upon formation of the carboxylate intermediate, the action of enoyl-CoA hydratase is followed by breakage...
of ‘C24-C25’ by an aldol lyase, resulting in release of propionyl-CoA from β-sitosterol and campesterol (Figure 5B, Chen, 1985; Fujimoto et al., 1982). Interestingly, deletion of ltp3 or ltp4 in R. rhodochrous strain RG32 resulted in complete blockage of β-sitosterol side chain degradation, but not of that of cholesterol. Both ltp3 and ltp4 encode proteins with similarities to the thiolase SCPx. Therefore, ltp3 and ltp4 were suggested to encode aldol lyase type enzymes with a specific and essential role in C-C cleavage of C24-branched side chain sterols in Rhodococcus strains.

![Figure 5: Overview of degradation pathway of side chain of Cholesterol (A) and branched side chain of sitosterol and campsterol (B) in Actinobacteria.](image)

Steroid Nucleus Oxidation

Steroid nucleus degradation is still among the most intricate problems in production of androstenones from sterols by whole-cell microbial catalysis. The enzymes responsible for the opening of steroid ‘ring-B’ are 3-ketosteroid-9α-hydroxylase (Ksh) and 3-ketosteroid-1-dehydrogenase (KstD; Figure 6). Due to the action of these two enzymes, chemically unstable 1,4-dien-9α-hydroxy steroid intermediates are formed to spontaneously break the 9(10) bond in “ring-B” followed by further core disruption. In order to obtain AD as the only product, both enzymes should be inactivated in the sterol side-chain cleaving strain, while the inactivation of either Kshs or KstDs can result in the formation of ADD or 9-OH-AD, respectively. But, in practice, a mixture of AD, ADD, testosterone, unconverted substrate, and products of incomplete side-chain degradation (mostly, C22 steroids) is often obtained (Wang et al., 2011).

Random mutations or mutations induced by UV or chemical treatment can result in an improvement of certain strain (Brzostek et al., 2009). However, selective interference of genes that encode for either Ksh or KstD seems to be the most promising way to generate highly selective strains (van der Gieze et al., 2007). For example, inactivation or augmentation of kstD gene in *Mycobacterium neoaurum* NwIB-01 resulted in efficient production of AD or ADD, respectively (Wei et al., 2010).
Generation of highly efficient strains capable of selective production of desired C19 steroids from phytosterol is complicated by the multiplicity of ksh and kstD genes in actinobacteria (such as Mycobacteria or rhodococci) and their integration into sterol catabolism when targeted destruction of one gene influences other key reactions (Petrusma et al., 2009). For example, six kstD homologs were revealed in M. smegmatis mc2 155 genome. Targeted disruption of one of them (kstD-1) resulted in partial inactivation of the cholesterol degradation pathway and accumulation of AD (Brzostek et al., 2009). Several homologous genes encoding KshA and KshB, which are the two gears — terminal oxygenase and ferredoxin reductase, respectively — of 3-ketosteroid-9α-hydroxylase in R. rhodochrous DSM43269, were identified (van der Gieize et al., 2007). The recognition of five KshA homologs, each of them displaying a unique pattern of steroid induction and also substrate range thus confirmed that 9α-hydroxylation can take place at different steps of steroid oxidation (Petrusma et al., 2009). The new fundamental findings of sterol catabolism by actinobacteria enable a prediction that novel efficient strains selectively producing valuable C19 or C22 steroids from sterols could be constructed in the very near future.

CONCLUSION

However, the data set is used in this review article are not complete and everything. They just supply a signal of width of the biocatalytic capability of actinobacteria in deep phenomenon of transformation of sterol. In most of the key reaction their application is getting preference in case of another microorganism or chemical product. In future research for the biotechnical capability of actinobacterial the search for new steroid-transforming mutants thereof will definitely offer much new promise for steroid biotechnology. For the growth of pharmaceutical industry, diosgenin drugs in the modern era has been scarcity and the demand of sterol drugs is come into account. Transformation of sterols such as cholesterol and sitosterol gain fascinating importance for the researcher to fulfil the pharmaceutical industry requirements and improve the capital. Additional optimization and remarkable improvement of sterol transformation is possible in engineering aspect whereas methods to improve strain is possible by chemostat mutation and DNA technology. The economical feasible process of sterol conversion is side chain cleavage at industrial scale it would be significantly important for researchers in biotransformation of sterols so our scheme to biotransformation of sterol is highly suitable for economic development of pharmaceutical industry as well as gateway for novel and innovative future work in microbiology filed.

REFERENCES

32. Horinouchi S., Ishizuka H. and Beppu T. Cloning, nucleotide sequence, and transcriptional analysis of the NAD(P)-dependent cholesterol dehydrogenase gene from a Nocardia sp. and its hyperexpression in...

