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INTRODUCTION 
 

Acute kidney injury (AKI), previously known as acute 
renal failure, is characterized by the sudden impairment 

of kidney function resulting in the retention of 

nitrogenous and other waste products such as Creatinine 

and Urea, normally excreted by the kidneys.[1,2] AKI, 

actually is a heterogeneous condition that share common 

diagnostic features: specifically, an increase in the blood 

urea nitrogen (BUN) concentration and/or an increase in 

the plasma or serum creatinine (SCr) concentration, often 

associated with a reduction in urine volume.[1] AKI, 

among acutely ill patients, is common worldwide, 

associated with increased morbidity, mortality, 
prolonged hospitalization,[2,3] long-term adverse 

outcomes comprising chronic kidney disease (CKD)[4] 

and cardiovascular events.[5,6,7] Though, there has been a 

tremendous medical progress recently, but the incidence 

of AKI has continued to rise, specifically among the 

hospitalized patients or those admitted to an Intensive 

Care Unit (ICU).[8,9] Nevertheless, accordingly with the 

implementation of better preventive measures, the 

mortality of patients developing AKI in the ICU has 

appeared to be reduced.[10] Early diagnosis of AKI and 

appropriate implementation of preventive strategies are 

described to be the utmost effective tools to improve 
AKI outcomes.[9,11] 

 

 

The clinicians Concern: Actual Burden of the Disease 

The defined ideas have led to a consensus definition of 
AKI by the Acute Dialysis Quality Initiative. It has been 

well- known as RIFLE criteria (Risk, Injury, Failure, 

Loss, end Stage)[12] have been broadly supported with 

minor modifications by the Acute Kidney Injury 

Network (AKIN).[13] A new consensus definition 

merging the RIFLE criteria and the Acute Kidney Injury 

Network definition has emerged from the Kidney 

Disease: Improving Global Outcomes (K-DIGO) group. 

 

Acute Kidney Injury is a common and important 

diagnostic as well as treatment challenge for the 

clinicians.[14] The incidence of the disease varies between 
definitions and populations. In the United States (US), 

there are more than 5000 cases per million people per 

year for non-dialysis requiring acute kidney injury, to 

295 cases per million people per year for dialysis 

requiring disease.[15] Data from the US depicts AKI at a 

frequency of 1.9% in hospital inpatients[14] and is 

especially common in critically ill patients, with 

prevalence of acute kidney injury being more than 40% 

at admission to the ICU if sepsis is present.[16] In a 

recently published meta-analysis regarding global burden 

of AKI,[17,18] the pooled incidence of AKI in the 
hospitalized population studied according to KDIGO-

equivalent criteria was 19.4% in Eastern Asia, 7.5% in 

Southern Asia, 31.0% in Southeastern Asia, 9.0% in 

Central Asia, and 16.7% in Western Asia.[18] This data 
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reveals an enormous medical burden of AKI in Asia, as 

in all world regions. Due to the limited number of meta-

analysis, it is still very difficult to estimate the exact 

prevalence of AKI in Asia.[19] The reason behind a 

growing problem in estimation of accurate prevalence of 

AKI is that most of the publications originate from large 
academic hospitals, generally focused on a special 

patient population with a high risk of AKI, such as 

patients in emergency or critical care units as well as 

patients undergoing cardiac surgery, exposed to 

nephrotoxins, with sepsis, and after trauma.[18] All of 

these factors ultimately leads to a bias in selection and an 

overestimation of the burden of hospital acquired AKI, if 

the data were used as representative of AKI among 

general population in different areas. In contrast, lack of 

adequate data of AKI has been well admitted in low-

income regions, such as lack of biochemical parameters 

of renal function and awareness of AKI by health 
practitioners. Apart from this, there are virtually no data 

on incidence of AKI in rural areas. Hence, there is an 

extensive underestimation in regard to the prevalence of 

AKI in low-income regions with the magnitude of 

community-acquired AKI (CA-AKI) being almost 

unknown.[19] 

 

Current Trends: What is in practice?? 
The traditional clinical practice includes the standard 

diagnostic tools for AKI detection as: 

 Monitoring of serum creatinine concentration (SCr)  
 Urine Output 

 

The diagnosis has evolved from the Risk Injury, Failure, 

Loss, End-Stage (RIFLE) criteria in 2004 to the AKD 

Network (AKIN) classification in 2007.[12,13] In 2012, 

both of these have merged forming Kidney Disease 

Improving Global Outcomes (KDIGO) classification.[20] 

Accordingly, AKI is diagnosed, if serum creatinine 

increases by 0.3 mg/dl (26.5 μmol/l) or more in 48 hours 

or rises to at least 1.5- fold from baseline within 7 

days.[21] AKI stages are defined by the maximum change 

of either serum creatinine or urine output. The 
importance of both criteria was confirmed in a recent 

study in > 32,000 critically ill patients, which 

demonstrated that short and long term risk of death or 

renal replacement therapy (RRT) were greatest when 

patients met both criteria for AKI and when these 

abnormalities persisted for longer than 3 days.[22] Various 

studies done in different groups of population have well-

defined an association between stages of AKI and short 

and long term outcomes.[23,24,25,26,27,28] Nevertheless, 

serum creatinine and urine output are the markers of 

excretory function, but not of kidney injury and they do 
not provide any information about other roles of the 

kidney, such as metabolic, endocrine, or immunological 

functions. Moreover, they are not specific to kidney and 

needs to be interpreted within the clinical context.[21] 

Likewise, patients might fulfil the AKI definition but 

might not have AKI, and conversely, a clear evidence of 

renal injury may be apparent in these certain individuals 

who do not meet the creatinine or urine criteria for 

AKI.[29,30] 

 

Creatinine and Urine based criteria for AKI: 

Potential Shortcomings 

Creatinine; a metabolite of Creatine, is synthesized from 
the amino acids Glycine, Arginine and Methionine in 

kidneys, liver and pancreas, and serve as an instant 

energy reserve of high-energy phosphate (Creatine 

Phosphate) in skeletal muscle.[31] Creatinine production 

is determined by the amount of creatine generated in 

liver, pancreas and kidneys, creatine that humans ingest 

by consuming red meat and muscle function.[21] 

Creatinine (Molecular Weight 113 Da) is freely filtered 

by glomeruli. A healthy person produces creatinine at 

constant rate that is in accordance with the rate of renal 

excretion.[32,33,34] The half-life of creatinine increases 

from 4 to 24-72 hours in case if the glomerular filtration 
rate (GFR) decreases. Therefore, the role of creatinine as 

a marker of renal function is limited. Intrinsically, the 

serum concentration may take 24-36 hrs to rise after a 

significant renal insult.[30,33,34] SCr is thus, a delayed and 

insensitive biomarker of changes in kidney function,[35] 

and not a demarcator of structural kidney damage and 

functional hemodynamic triggers. Also, patients with 

reduced muscle mass may not have a robust rise in SCr 

despite a substantial kidney injury.[36,37] Above all, 

circulating substances like bilirubin or drugs may 

interfere with estimation of creatinine commonly with 
Jaffe- based assays and no other standardized laboratory 

method for quantification available.[21] 
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Table 1: Drawbacks of Creatinine and Urine based criteria for AKI. 
 

Clinical Scenario Consequences 

Administration of drugs which interfere with tubular secretion of 

creatinine (i.e. cimetidine, trimethoprim) 

Misdiagnosis of AKI (rise in serum 

creatinine without change in renal function) 

Reduced production of creatinine (i.e. muscle wasting, liver 

disease, sepsis) 
Delayed or missed diagnosis of AKI 

Ingestion of substances which lead to increased generation of 

creatinine independent of renal function (i.e. creatine, cooked meat) 
Misdiagnosis of AKI 

Obesity 
Over diagnosis of AKI if using actual 

weight when applying urine output criteria 

Conditions associated with physiologically increased GFR (i.e. 
pregnancy) 

Delayed diagnosis of AKI 

Interference with analytical measurement of creatinine 

(i.e. 5-fluorocytosine, cefoxitin, bilirubin) 

Misdiagnosis and delayed diagnosis of AKI 

(depending on the substance) 

Fluid resuscitation and overload 
Delayed diagnosis of AKI (dilution of 

serum creatinine concentration) 

Progressive CKD with gradual rise in serum creatinine Misdiagnosis of AKI 

Extrinsic creatinine administration as a buffer in medications (i.e. in 

Dexamethasone, Azasetron) 
Pseudo-AKI 

Oliguria due to acute temporary release of ADH (i.e. post-

operatively, nausea, pain) enhanced by maximal sodium 

reabsorption in the setting of volume/salt depletion 

Misdiagnosis of AKI 

Adapted from Ostermann and Joannidis
[21]

 as reference 

 

New Biomarkers of AKI: Recent Trends and 

Discoveries  

Biomarkers of AKI has proved to be able in recognizing 

the injury to renal tubular system and an early 

identification of the patients progressive to develop 

AKI.[9,10,11] Consistent hard work by scientists in last two 
decades have led to the invention of few potential novel 

biomarkers, that are easily measurable in urine or plasma 

of patients with AKI.[38] These biomarkers vary in their 

anatomical origin, physiological function, time of release 

after the onset of renal injury, kinetics and 

distribution.[39,40] Few among these markers also provide 

information about the underlying etiology and indicate 

different stages of the pathophysiological processes 

involved in AKI from acute injury to recovery.[41] The 

convenient use of these recent biomarkers has led to the 

detection of subtle changes in renal function before the 
rise of serum creatinine and identification of patients 

with evidence of kidney injury without a change in 

serum creatinine, i.e. “sub-clinical AKI”.[42,43,44,45] Of 

reminder, biomarker-positive with creatinine-negative 

patients appear to have a greater risk of complications 

with an increased duration of hospital stay and higher 

mortality compared to the similar counterpart without a 

biomarker rise.[44] The 10th Acute Dialysis Quality 

Initiative (ADQI) Consensus Conference proposed to 

utilize both function and damage biomarkers in 

combination with traditional markers of renal function to 
better define and characterize AKI.[43,46] This approach 

has explained the spectrum of AKI better than serum 

creatinine and urine output alone and has the potential to 

transform the way clinicians diagnose and manage 

patients with AKI.[21] Above all, measurement kits for 

markers like Cystatin-C, NGAL, IGFBP-7 and TIMP-2 

are commercially available. Till date, clinicians use 

Cystatin-C as one of the routine biomarkers of AKI.[21] 

 

Table 2: Stratification of Biomarkers for AKI. 
 

Functions Biomarkers 

Glomerular 

Filtration 
Cystatin-C 

Glomerular Integrity Albuminuria, Proteinuria 

Tubular Stress 

Insulin Like growth factor 
binding protein- 7 (IGFBP-7), 

Tissue Inhibitor 

Metalloproteinase 2 (TIMP-2) 

Tubular Damage 

Neutrophil Gelatinase- 

associated Lipocalin (NGAL), 

Kidney Injury Molecule-1, N-

Acetyl- β- D-glucosaminidase 

(NAG), Liver Fatty Acid 

Binding Protein (L-FAB) 

Intra-renal 

Inflammation 
Interleukin-18 

Adapted from Ostermann and Joannidis
[21]

 as 

reference 
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Development in a Decade: Biomarkers in AKI 

 
Figure 1: Current Paradigm for AKI evaluation [Adapted from Malhotra and Siew

[47]
] as reference. 

 

 
Figure 2: Advancement in Acute Kidney Injury [(Adapted from Bellomo, Kellum and Ronco)

[2]
] as reference. 

 

Assessment of Glomerular Filtration 

Cystatin-C 

Human Cystatin -C is a basic low molecular mass protein 

(Mr = 13,359) [13 KDa] with a sequence of 120 amino 

acids (48)(49). Cystatin-C was previously called as 

gamma-trace, post-gamma-globulin or neuroendocrine 

basic polypeptide (50) (51). Cystatin-C is a member of 
the Cystatin superfamily, that are proteins grouped 

together because of similar amino acid sequences and 

their cysteine protease inhibitor activity.[52] The house-

keeping gene type indicates a stable production rate of 

Cystatin-C by most nucleated cell types and the protein 

and/or its mRNA is present in virtually all investigated 

cell types including kidney, liver, intestine, stomach, 

antrum, lung and placenta.[53] 

 

Cystatin-C is considered to be a sensitive marker of acute 

renal injury and unlike creatinine its levels are not 

influenced by height, age, sex, muscle mass or acute 

phase reactions that highlight the potential diagnostic 
importance of this novel biomarker.[54,55] Blood plasma 

proteins with molecular masses below 15-25 kDa are in 

general freely filtered through normal glomerular 

membrane and then almost completely reabsorbed as 

well as degraded by the normal proximal tubular cells.[56] 

These are the properties of circulating plasma proteins 

with low molecular mass that prove true for Cystatin-
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C.[56] Studies done in rats demonstrated that the renal 

clearance of radiolabelled Cystatin-C closely correlates 

to GFR estimated by the Cr51 

Ethylenediaminetetraacetic acid (51Cr-EDTA); a gold 

standard marker for GFR.[57] 

 
The development of automated particle-enhanced 

immunoturbidimetric methods, which are rapid and more 

precise has substantially improved the possibility of 

using serum Cystatin-C as a marker for GFR in clinical 

routine work.[58] Certain skills such as ELISA, 

Immunoturbidimetry, Nephelometry and 

Chemiluminescence (CLIA) are the newer techniques 

that follow after the development of automated particle-

enhanced immunoturbidimetric methods(58). Few 

studies have analyzed the role of Cystatin-C in patients 

with AKI.[59] Investigators have demonstrated that 

Cystatin-C levels increase on average around 35 hours 
before the rise of SCr levels,[60] and similar finding has 

been revealed in critically ill patients and in cases of 

contrast-induced renal toxicity
[61]

 and in acute kidney 

graft rejection.[62] However, early diagnosis of AKI 

should be based in solid evidence, which is not an easy 

scenario in clinical practice.[59] The integral weaknesses 

in the application of Cystatin-C readings for the early 

diagnosis of AKI include its considerable intra-

individual variability,[63] thereby hindering the detection 

of significant changes in its plasma concentration. 

Moreover, to reach a valid conclusion applicable to 
clinical practice, more studies is needed in a homogenous 

group of patient population taking in major consideration 

of AKI etiology.[59] Briefly, the contribution of Cystatin-

C in early diagnosis of AKI and incident AKI in patients 

with septic shock possibly be questioned by the 

variability of its readings. Although, Cystatin-C appears 

to increase with greater precocity and in greater amounts 

than serum creatinine, the kinetics of which have not 

been studied in depth in these group of ill population.[59]  

 

Assessment of Tubular Stress 
Cell-Cycle arrest in G1 phase may be a cellular 
mechanism to emerge from circumstances when dormant 

DNA breakage can occur.[64] Renal epithelial cells have 

shown to undergo G1 cell cycle arrest during the 

ischemic or septic AKI.[65,66] Cell- cycle arrest is 

considered to be critical in restricting the consequences 

of AKI shown by a study which demonstrates that p21- 

deficient mice being more sensitive to cisplatin-induced 

AKI, develop a more severe injury and showed increased 

mortality.[67] Investigators have shown that markers of 

cell-cycle arrest i.e. IGFP7 and TIMP-2 are involved at 

an early phase of cellular injury.[68,69] 

 

Insulin Like growth factor binding protein7 

(IGFBP7) 

IGFBP7 is correspondingly known as IGFBP-related 

protein 1, Mac 25, Angiomodulin, Tumour-derived 

adhesion factor and Prostacyclin stimulating factor. It is 

an ubiquitously expressed 29 kDa protein, initially 

known to be a tumour suppressor and regulator of 

cellular senescence.[70] The SAPHHIRE investigators 

highlighted the role of IGFBP-7 as a biomarker in AKI 

as TIMP-2. The findings from this study reported that the 

elevated urine IGFBP-7 predicted the onset of KDIGO 

stage 2 or 3 AKI within 12 hours of sample collection.[69] 

A similar but smaller study (n=52) done in the patients in 
ICU showed that on the day of AKI diagnosis, elevated 

urinary IGFBP-7 outstrips urine NGAL as a predictor of 

non-resolving AKI within 7 days.[71] 

 

Studies have proposed that the injured tubular epithelial 

cells secrete IGFBP7 thereby attenuating renal injury by 

the induction of G1 cell cycle arrest in nearby surviving 

cells through up-regulation of p21 and p53 expression.[69] 

It is possible that elevated IGFBP-7 may perhaps have a 

deleterious effect on the injured kidney, as IGFBP7 is an 

IGF-1 receptor antagonist.[72] IGF-1 improves renal 

perfusion and increases GFR. Hence, an increased 
IGFBP7 could alter renal hemodynamics and thus 

exacerbates renal injury.[73]  

 

Tissue Inhibitor of Metalloprotienase-2 
A two-stage, multicenter study (n=522 in stage 1; n=728 

in stage 2) carried out by Kashani et al laid to the 

discovery of TIMP-2 along with IGFBP7 as a novel AKI 

biomarker. The study tested the ability of 340 proteins, 

including known AKI biomarkers to predict the 

development of AKI in ICU population (including 

patients after cardiac surgery).[69] TIMP-2 was a strong 
predictor of development of KDIGO stage 2 or 3 AKI 

within 12 hours and the investigators proposed that the 

diagnostic performance of TIMP-2 is derived from its 

MMP- dependent role in inducing G1 cell cycle arrest 

after an ischemic insult, preventing subsequent cell 

death.[69] This study was supported from the data of an in 

vitro study of human microvascular endothelial cells, 

which demonstrated that TIMP-2 binds to α3β1-Intergrin 

to induce a Shp-1- mediated increase in the synthesis of 

the cyclin-dependent kinase inhibitor p27kip1, resulting in 

G1 cell cycle arrest.[74] 

 
The role of TIMP-2 in AKI seems to be more 

complex.[73] TIMP-2 is implicated in activation of MMP-

2. MMP-2 is an enzyme which has attributed its role in 

facilitating renal recovery after ischemia-reperfusion 

injury. Literature supports TIMP-2 to have both renal-

protective and pro-recovery roles.[73] Hence, it is 

currently unclear about the use of TIMP-2 as a biomarker 

for mechanistic understanding and therapeutic 

modulation of AKI. Also, additional researches using 

conditional knockouts and pharmacologic inhibitors of 

TIMP-2 are needed to redefine its mechanistic role in 
renal injury.[73] 

 

Markers of Tubular Damage 
 Neutrophil Gelatinase- associated Lipocalin 

(NGAL) 

 Kidney Injury Molecule-1 

 N-Acetyl- β- D-glucosaminidase (NAG) 

 Liver Fatty Acid Binding Protein (L-FAB) 
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Neutrophil Gelatinase- Associated Lipocalin (NGAL) 

NGAL is the widely expressed 25-KDa protein of the 

Lipocalin family.[75,76,77] Also known as Siderocalin, 

Lipocalin-2, Oncogene 24p.[78] Three distinct forms of 

Human NGAL has been identified: 25 kDa monomer, 

45- kDa Homodimer and 135 kDa Heterodimer. 
Heterodimeric NGAL is conjugated to gelatinase and is 

specific to neutrophils.[78,79] A steady low level of NGAL 

expression is reported to be seen in various cell types, 

such as the Uterus, Prostate, Salivary Gland, Lung, 

Trachea, Stomach, Colon and Kidney.[80] 

 

Normally, NGAL binds to iron-siderophore complexes 

and exerts a bacteriostatic role of the innate immune 

system by sequestering Iron-Siderophore complexes and 

hence limits iron uptake by bacteria.[81,82] NGAL in 

addition provides anti-apoptotic effects and enhances 

proliferation of renal tubular cells, thus establishing its 
potential pathways in kidney protection during AKI.[76,83] 

An ischemic or nephrotoxic injury to the kidney, leads to 

a dramatically upregulated intrarenal NGAL at the 

transcriptional and translational levels.[75,76,77] An 

elevated NGAL protein in urine is detectable as early as 

3 hours after the renal injury.[76,84] An In vivo study 

suggests that the thick ascending limb and the collecting 

duct as the sites of intrarenal NGAL production, while 

the proximal tubules have shown to secrete NGAL in 

response to ATP depletion.[76,84,85] The concentration of 

Urine NGAL peaks approximately 6 hours after injury, 
with some evidence of persistent elevation for as long as 

5 days post-injury.[86,87,88] An increased NGAL 

concentration in AKI has been attributed to increased 

hepatic production. NGAL is filtered by the glomerulus 

and then taken up by the proximal tubule in a megalin-

dependent method.[84,85,89] A decrease in tubular 

reabsorption after AKI may further lead to increased 

urine NGAL production.[90,91] NGAL expression in AKI 

often follows a dose- dependent curve with respect to the 

severity of renal injury with urinary and plasma NGAL 

levels rising rapidly and proportionally to the severity 

and duration of the insult.[90,92,93,44] An evidence suggest 
that an increased urine NGAL can differentiate intrinsic 

renal damage from hemodynamic alterations as a result 

of volume depletion as well.
[94,95,96,90]

 Consequently, both 

urine and plasma NGAL have shown to potentially exert 

an effect on the intra-renal molecular and cellular events 

that occur during AKI and both have been extensively 

used to predict the onset and course of AKI.[73,79]  

 

Kidney Injury Molecule-1 (KIM-1) 

KIM-1 is a 38.7 kDa transmembrane protein containing 

extracellular mucin and Ig domains.[97] The expression of 
KIM-1 is very low in a normal kidney and other organs. 

While, the expression is upregulated significantly in the 

kidney after an ischemic-reperfusion injury[97] and in 

drug-induced AKI among murine models.[98,99] Studies 

have shown KIM-1 protein can be localized to 

proliferating dedifferentiated epithelial cells of the 

proximal tubule 48 hours after injury.
[97]

 KIM-1 is 

believed to participate in both kidney injury and healing 

process as well.[100] An Insitu hybridization indicated 

KIM-1 as a marker of proliferation and regeneration in 

proximal tubules.[101] Researches have also suggested 

that KIM-1 serves as a phosphatidylserine receptor and 

thereby mediates phagocytosis of apoptotic cells 

presented in post-ischemic kidney.[102,103,104,105] 
 

In contrast to its name, KIM-1 is more than a marker of 

renal injury, with a functional role in molecular as well 

as cellular biology of AKI and its increased expression 

promotes the phagocytosis of apoptotic bodies and 

necrotic debris.[103] Thus, KIM-1 may play a role in renal 

recovery and tubular regeneration after AKI.[103] These 

findings seem to be consistent with the late timing of 

peak changes (2-3 days after injury) in urine KIM-1 

concentration during AKI.[106,107] Hence, the 

pharmacologic interventions that enhance the effect of 

KIM-1 could potentially benefit the patients by 
expediting effective clearance of debris from the injured 

tubules.[73] Accelerated shedding of KIM-1 from renal 

tubular epithelial cells is mediated by MMP-3, which 

could be inhibited to increase the amount of membrane- 

bound KIM-1 and potentially enhance the clearance of 

debris from the tubule.[108] Also, accelerated KIM-1 

shedding is thought to be driven by p38 mitogen-

activated protein kinase signaling in response to the 

production of growth factors involved in cell 

proliferation and recovery. Thus, the urine KIM-1 

concentration could be used to differentiate between the 
extension phase and the maintenance along with 

recovery phases of AKI.[109] thereby, highlighting the 

potential use of KIM-1 to direct interventions specific to 

these phases.[73] This could be related as a patient with 

low KIM-1 concentration (or one that is rising but has 

not peaked) would suggest that a patient could still 

benefit from therapies directed to attenuate injury, in 

contrary to a higher concentration of KIM-1 which 

indicate that a patient would benefit from therapies 

designed to enhance renal recovery, as those that target 

mitochondrial dysfunction and enhance mitochondrial 

biogenesis, which is thought to be critical in repair of the 
damaged renal epithelium.[110] Various studies done in 

adults suggested that urinary KIM-1 could differentiate 

patients with acute tubular necrosis from those without 

the respective condition and also well predict the adverse 

clinical outcomes including dialysis requirement and 

mortality.[111,112] KIM-1 has been approved by the US 

Food and Drug Administration (FDA) as a biomarker for 

AKI for preclinical drug development.[113] A lateral flow 

dipstick for KIM-1 has been already developed providing 

a simplified way of assessing KIM-1 levels[114] that 

yields a semi-quantitative results in 15 minutes.[115] 
 

The prognostic use of KIM-1 have been reported with 

modest results.[116,117] Also, increased urinary KIM-1 can 

indicate either injury or the repair response to injury, 

concentration of KIM-1 alone may not be able to 

distinguish with high accuracy between AKI, which will 

proceed to severe AKI and injury and which will 

recover.[73] This reflects the need of combination of 
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KIM-1 with other injury markers which might be more 

useful. A study done by Arthur et al have reported the 

use of 32 urine biomarkers in AKI after cardiac surgery 

and found that urine KIM-1 concentration had relatively 

poor correlation with other markers of injury.[117] They 

concluded that a combination of Il-18 and KIM-1 had the 
best predictive ability to predict severe AKI.[117] 

 

N- Acetyl-β-D-Glucosaminidase (NAG) 

N-Acetyl-β-D- Glucosaminidase (NAG) is a lysosomal 

enzyme primarily found in proximal tubules.[118] 

Increased activity of this enzyme in urine suggests 

tubular cell injury and can serve as a specific urinary 

marker for tubular cells(118). NAG has been extensively 

studies and proven to be a sensitive, persistent and a 

robust indicator of tubular injury as shown by its 

increased level with nephrotoxicant exposure,[119] 

delayed renal allograft function, chronic glomerular 
disease, diabetic nephropathy[120] and those following 

cardiopulmonary bypass procedures.[121] 

 

A study reported by Westhuyzen et al[122] showed urinary 

NAG levels (in addition to other tubular enzymes) were 

highly sensitive for detection of AKI in a population of 

critically ill adult patients, and it also preceded increase 

in serum creatinine by 12 hours to 4 days. One of the 

study has reported poorer outcome [Death in hospital, 

requirement for long-term renal replacement therapy 

(RRT)] in patients with higher urinary NAG levels on 
admission to a renal care unit.[123] Higher the urinary 

NAG concentration in patients already diagnosed using 

AKI clinical criteria, greater the incidence of the 

combined end point of dialysis or death.[112] NAG has 

been shown to be a sensitive biomarker for AKI with 

subtle alterations in epithelial cells of the brush border of 

the proximal tubules resulting in shedding of NAG into 

urine. Also, the amount of shed enzyme can be directly 

correlated to tubular injury. The quantitation method is 

simple and reproducible enzyme assays are well 

established to measure the analyte colorimetrically using 

spectrophotometer.[124] 
 

However, Urinary NAG activity has been found to be 

inhibited by endogenous urea
[125]

 and by a number of 

nephrotoxicant and heavy metals.[126] Also increased 

urinary NAG have been seen in a variety of conditions in 

the absence of clinically significant AKI, as in 

Rheumatoid Arthritis,[127] impaired glucose tolerance[128] 

and hyperthyroidism.[129] This non-specificity related to 

NAG limits the use of NAG levels as a biomarker of 

AKI.  

 

Liver Fatty Acid Binding Protein (L-FABP) 

L-FABP, a 14 k-Da protein from the large superfamily of 

lipid-binding proteins,[130] is predominantly localized in 

proximal tubule.[131,132] This protein belongs to the family 

of carrier proteins for fatty acids and aids in regulation of 

fatty acid uptake and intracellular transport[133,134] and is 

expressed not only in the liver but also in the stomach, 

intestine, lung and kidney.[135] The role of L- FABP has 

been recognized to bind and transport fatty acids to 

mitochondria and peroxisomes in order for generation of 

the energy via oxidation[136] with additional cell-

protective role by mitigating H2O2-induced oxidative 

stress.[137] Elevated urinary L-FABP excretion prior to 

the increase in SCr have been reported in several animal 
models of AKI, which includes ischemia-reperfusion and 

cisplatin AKI models.[138,139] Also, increased urinary-L 

FABP is detectable immediately in patients undergoing 

cardiac surgery who continue to develop AKI and peaks 

within 6 hours.[106,140] 

 

High urinary L-FABP levels have been shown to be 

associated with worse outcomes and also necessitate for 

renal replacement therapy (RRT) in patients with 

accelerated deterioration of renal function.[141] A recent 

systematic review conducted by Susantitaphong et al.[142] 

evaluated the performance of urinary L-FABP in AKI 
with an estimated sensitivity and specificity of urinary L-

FABP being 75% and 78% for AKI diagnosis, 69% and 

43% for prediction of the need for dialysis and 93% and 

79% for in-hospital mortality, respectively.[142] An 

elevated L-FABP levels measured in patients at the time 

of ICU admission had a very high risk of AKI 

development within the first week of admission.[143] 

Urinary L-FABP has shown to improve the predictive 

capability of clinical prediction in a study done in 

critically ill patients with respect to AKI progression, 

dialysis or death within 7 days among patients with early 
AKI.[144] Moreover, the use of NGAL and L-FABP has 

been described to be a promising combination improving 

the diagnostic performance of AKI detection but a poor 

predictor of renal recovery after AKI.[145] Hence, urinary 

L-FABP have shown to be a potential biomarker for both 

diagnosis and prediction of AKI and its outcomes among 

critically ill patients.[146] 

 

Markers of Intra-renal Inflammation 

Interleukin- 18 (IL-18) 

Commonly known as Interferon-gamma inducing factor. 

It is a 24-kDa cytokine pertaining to the IL-1 family of 
cytokines and regulates innate and adaptive 

immunity.[147,148] IL-18 is synthesized by multiple tissues 

which includes monocytes, macrophages, proximal 

tubular epithelial cells and the intercalated cells of the 

collecting ducts as an inactive precursor[149] and is 

processed into an active form by caspase 1.[150] IL-18 

which is cleaved have shown a pro-inflammatory effect 

by signal transduction through the IL-18 receptor/ IL-18 

receptor accessory protein heterodimer.[151] Moreover, 

IL-18 levels have shown to be increased in endogenous 

inflammatory processes, as in sepsis,[152] with an 
indication depicting IL-18 as both a mediator and 

biomarker of AKI.[153,154] Levels of IL-18 rises 

approximately 6 hour after the ischemic injury, 24 to 48 

hour before the AKI diagnosis and it peaks at 12 hours 

later at values up to 25 times from normal level.[153] IL-

18 has been expected to be an attractive target for 

biomarker-directed therapy of AKI, as this 

proinflammatory cytokine have shown an important role 
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in the inflammatory processes that exacerbate renal 

injury during the extension phase of 

AKI.[155,156,157,158,159,160] IL-18 binding protein has shown 

to be renoprotective in ischemia- reperfusion injury 

model for AKI.[157] Moreover, IL-18 remains elevated 

within the first 6 hours after renal injury and it does not 
peak until after 12-18 hours, thus anti- IL-18 treatment 

would more likely need to be initiated within the first 6 

hours after renal injury.[73] 

 

Till date, only few clinical studies has reported the use of 

IL-18 as an AKI biomarker.[161] Most of these 

investigations have suggested significant results 

regarding use of IL-18 in pediatric patients with AKI 

after cardiac surgery.[162,163] Inspite of this, some studies 

have failed to indicate a strong predictive ability of IL-18 

for AKI among the ICU or emergency department 

population.[96,164] Also, a systematic review describes that 
these inconsistent results may be due to the lack of 

definite agreement and standardization on the suitable 

cutoff level of IL-18 for AKI population.
[161]

 

 

Recent Discoveries in AKI: Biomarkers in progress 
 

Urinary Angiotensinogen 

Intra-renal activation activate Renin-Angiotensin system 

(RAS) activation which has shown to drive the 

progression of AKI and transition from acute to chronic 

kidney injury.[165] Angiotensinogen is a 453-amino-acid-

long protein with 10 N-terminal amino acids that are 
cleavable by renin, leading to the formation of 

angiotensin-I.[166,167] Angiotensin I is further converted to 

angiotensin II by angiotensin-converting enzyme and 

exerts its robust biologic effects.[166,167] Studies have 

reported as urinary angiotensinogen to be a novel 

prognostic marker for AKI. AKI patients with elevated 

urinary angiotensinogen have been shown to progress to 

higher stages of AKI and higher mortality rates.[168,169] 

Elevated urinary angiotensinogen has been seen in 

patients with post cardiac surgery and has also been used 

for predicting progression of AKI to stage 3 and 
predicting mortality.[170] Animal studies have shown that 

intrarenal angiotensin II increases after renal ischemia 

reperfusion injury, while concentrations of angiotensin 1-

7 (inhibitory molecule to angiotensin II) decrease in the 

kidney tissues..[171] Studies have highlighted the 

performance of Urinary Angiotensinogen being superior 

to previously reported biomarkers such as NGAL and 

UACR.[172] Moreover, a cohort study done in 119 

patients demonstrated that urinary angiotensinogen might 

be a novel and potential biomarker for identifying 

patients at high risk of cardiorenal syndrome in the 
setting of acute decompensated heart failure.[172] Still, the 

answer to whether urinary angiotensinogen level can 

serve as a biomarker for AKI from other causes remains 

to be addressed and various investigations are in 

progress.[172] 

 

Asymmetric Dimethylarginine 

Asymmetric Dimethylarginine (ADMA) is the catabolic 

product of proteins containing methylated arginine 

residues.[173] ADMA is an endogenous inhibitor of nitric 

oxide synthase (NOS). Under normal conditions, the 

production of ADMA is balanced by its metabolism by 

Dimethylarginine dimethylaminohydrolase (DDAH-

1).[174] A study reported by Nakayama et al demonstrated 

that ischemia-reperfusion elicited oxidative stress 
contributes to the progression of AKI by stimulating 

tubular necrosis through the elevation of ADMA in 

kidney, via oxidative stress-induced proteosomal 

degradation of DDAH-1.[175] ADMA can directly cause 

glomerular injury and progressive renal dysfunction,[176] 

thus it might be considered both as a biomarker (not 

strictly a tubular marker) and a direct renal toxin.[165] 

Elevated ADMA levels are strongly associated with 

progressive kidney injury in a various form of 

diseases,[177,178,179,180] hence strategies to reduce ADMA 

and thereby enhancing DDAH-1 activity or protein 

expression may be a potential strategy to impede the 
renal disease progression.[165] 

 

Genetics in AKI: Urine microRNA in AKI 

One of the innovative discovery in field of diagnosis in 

medicine these days has led microRNA to be under 

limelight. MicroRNAs are the endogenous and non-

coding RNA molecules containing 18 to 22 nucleotides, 

regulates gene expression by inhibiting protein 

translation. Studies have shown that in patients 

undergoing cardiac surgery, urine and plasma miR-21 

concentration orchestrate a microRNA-controlled 
apoptosis of renal tubular epithelial cells and promote 

cellular proliferation in response to renal-ischemia 

reperfusion injury, thereby contributing in detection of 

AKI.[181] In addition, a recent pilot study showed that 

other sets of microRNAs, including miR-101-3p, miR-

127-3p, miR-210-3p, miR-126-3p, miR-26b-5p, miR-

29a-3p, miR-146a-5p, miR-27a-3p, miR- 93-3p, and 

miR-10a-5p, were altered several days prior to the 

increase in SCr, indicating their potential as prognostic 

AKI biomarkers among ICU patients.[182] The potential 

benefit of miRNA as a biomarker is their stability in 

serum, urine and saliva[183] with investigations 
suggesting the analyte being stable in urine samples after 

several freeze-thaw cycles and even upto 24 hours at 

room temperature.
[184]

 A disadvantage is that miRNA 

levels in body fluids are low and require sensitive and 

specialized tools for analysis.[55] The miR-21 has been 

extensively studied and found to play a role in cell 

proliferation and downregulation of apoptosis after renal 

injury and inflammation.[185,186,187,188] 

 

Imminent Diagnostic Tools: Upcoming application in 

Medicine 
Researches have been coming up with new functional 

and damage markers of AKI related to the underlying 

pathophysiology of AKI with potential utilization as a 

diagnostic tool.[21] Among them, few are expected to be 

routinely integrated into the definition as well as 

diagnostic workup of AKI.[189] Above all, the ability for a 

rapid and accurate measurement and monitor GFR in 
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real-time would be more beneficial especially in the 

intensive care unit.[190,191] 

 

Optical measurement techniques using minimally 

invasive or non-invasive techniques able to quantify 

renal function independent of serum creatinine or urine 
output are being developed.[21] A significant progress is 

being made in past few years in using two-photon 

excitation fluorescence microscopy to study renal 

function.[191] Some of these approaches will definitely 

enter the clinical phase studies in the near future and 

thereby enable for an early diagnosis of AKI with 

tremendous improvement in clinical management.[21,191] 

 

CONCLUSION 
 

Scientist have been continuingly devoted in the invention 

and development of new biomarkers in AKI. Few of 
them has shown to be a promising and novel biomarker 

such as Urine NGAL, KIM-1, IL-18, L- FABP. 

Upcoming biomarkers which have shown to be an early 

and highly specific marker includes Urinary 

Angiotensinogen, Urine microRNA. Above all, no new 

biomarkers has been universally accepted in routine 

clinical use and some of them are locally available for 

clinical use; like NGAL in Europe, L-FABP in Japan, 

TIMP-2, IGFBP-7 in USA(192). Also, KIM-1 has been 

approved by FDA for preclinical drug development(113). 

Though, the development of AKI biomarkers is a matter 

of long-term investment, but the path will definitely lead 
to a successful development of therapeutic options for 

AKI.[193]
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